Sztuczna inteligencja w nowoczesnej produkcji: inteligentne planowanie zadań produkcyjnych
Katgoria: WIADOMOŚCI / Utworzono: 24 czerwiec 2024
Kluczową informacją dla decydentów w obszarze zarządzania produkcją jest stopień przestrzegania norm produkcyjnych oraz tempo realizacji prac. Normy produkcyjne stanowią fundament dla utrzymania wysokiej jakości i efektywności procesów produkcyjnych. Ich przestrzeganie jest niezbędne do zapewnienia, że produkty końcowe spełniają określone standardy jakości, a procesy są realizowane w sposób zoptymalizowany pod względem kosztów i czasu.
Wysoki stopień przestrzegania norm produkcyjnych oznacza, że firma jest w stanie utrzymać stabilność jakości swoich produktów, co bezpośrednio przekłada się na zadowolenie klientów oraz lojalność rynkową. Ponadto systematyczne monitorowanie i analiza KPI pozwala na wczesne wykrywanie problemów, co umożliwia szybką reakcję i minimalizację strat. Tempo realizacji prac jest fundamentalnym aspektem zarządzania produkcją, który wpływa na ogólną wydajność i efektywność przedsiębiorstwa.
Modele prognozowania tempa pracy operatorów
Z myślą o maksymalizacji efektywności operacyjnej poprzez optymalizację przydziału zadań i monitorowanie tempa pracy operatorów jednym z elementów projektu realizowanego przez eq system "Opracowanie oprogramowania do inteligentnego planowania i dystrybucji zadań operatorów produkcyjnych wspomaganego przez sztuczną inteligencję w modelu cyfrowej repliki (digital twin)" było opracowanie narzędzi i modeli prognozowania tempa pracy operatorów. W celu rejestrowania postępów gromadzone są dane dotyczące łącznego czasu pracy operatorów, historycznych norm produkcyjnych zastosowanych w planie, dane dotyczące procesów produkcyjnych: czas trwania, ilość wyprodukowanych jednostek, dostępność operatorów w przeszłości oraz struktura ich pracy (czy to w zespołach, czy indywidualnie).
Na podstawie zgromadzonych danych rozwiązanie eq system pozwala na analizę efektywności poszczególnych procesów w przeszłości i prognozuje efektywność procesów produkcyjnych, wykorzystując informacje o dostępnych operatorach. Proces realizacji inteligentnego planowania i dystrybucji zadań operatorów produkcyjnych wspomaganego przez sztuczną inteligencję opracowany przez eq system opiera się na synergii systemów IT i precyzyjnym przepływie informacji. Projektowane interfejsy zakładają dwa główne scenariusze wykorzystania: bieżącą pracę brygadzisty/mistrza, który rozdysponowuje zadania do najlepiej dopasowanych pracowników realizujących optymalne tempo produkcji, oraz pracę planisty, który koryguje plany produkcyjne według informacji o prognozie tempa produkcji dla poszczególnych grup operatorów.
Integracja danych i elastyczność procesów
W ramach procesu, do systemu planującego i harmonogramującego ASPROVA APS dostarczane są dane generowane w platformie XPRIMER, obejmujące zarówno plan obsady (z modułu XPRIMER.HRM), technologię produkcji (z modułu XPRIMER.TCW) oraz struktury grup operatorów i realizację produkcji wynikającą z ewidencji produkcji (w XPRIMER.MES). Na podstawie historycznej realizacji produkcji przeprowadza się obliczenia modelu AI, prognozującego globalne tempo operatora. Te dane są analizowane w celu przewidywania przyszłych wyników. Rozpoczęcie planowania operacji produkcyjnych i analiza danych prognostycznych są sercem tego procesu, obejmując zadania związane z wykorzystaniem prognoz AI do dostosowania planów produkcji. Proces planowania, harmonogram produkcji oraz analiza danych modelu AI odbywa się w cyklach dostosowanych do specyfiki danej organizacji oraz działu produkcji, co pozwala na adaptację do zmieniających się warunków i optymalizację procesów produkcyjnych. Synergia systemów polega na integracji danych z różnych modułów (HRM, TCW, MES) oraz ich wykorzystaniu przez model AI do prognozowania tempa pracy operatorów. Integracja z systemem ASPROVA APS umożliwia korygowanie planów produkcyjnych, co zwiększa elastyczność i adaptacyjność całego procesu produkcyjnego. W rezultacie cały proces wspomagany przez sztuczną inteligencję pozwala na optymalizację przydziału zadań, zwiększenie efektywności pracy operatorów oraz lepsze zarządzanie zasobami, przekładając się na wyższą wydajność i jakość produkcji.
Prognozowanie efektywności procesów produkcyjnych
Drugi proces zrealizowany przez eq system w ramach projektu „Opracowanie oprogramowania do inteligentnego planowania i dystrybucji zadań operatorów produkcyjnych wspomaganego przez sztuczną inteligencję w modelu cyfrowej repliki (digital twin)" dotyczył prognozowania efektywności procesów produkcyjnych. Analiza historycznych danych umożliwia identyfikację wzorców wydajności operatorów, co jest podstawą do budowy modelu prognostycznego. Model ten przewiduje efektywność przyszłych procesów produkcyjnych. Dzięki temu można podnieść efektywność poszczególnych procesów produkcyjnych, co ma bezpośrednie przełożenie na ogólną wydajność zakładu. Dane wejściowe wykorzystywane w procesie obejmują historię wydajności produkcyjnej, plany produkcyjne z przeszłości, informacje o personelu pracującym przy produkcji, grafik dostępnych operatorów, informacje o ich zaangażowaniu i stopniu zaawansowania w zadaniach oraz szczegóły dotyczące używanej technologii. Te dane są kluczowe dla dokładnego modelowania i prognozowania przyszłej efektywności. Model AI generuje dwa rodzaje prognoz: prognozę uwzględniającą plan produkcyjny oraz prognozę bez planu produkcyjnego, która jest oparta na trendach wydajności pracownika. Dane zwracane z modelu AI są prezentowane w formularzach, które pokazują wydajność operatorów. Na tych interfejsach, dane wynikające z prognozy są uzupełniane danymi statystycznymi, co umożliwia kompleksową analizę i lepsze rozumienie wyników przez decydentów.
Zarządzanie zasobami ludzkimi z wykorzystaniem AI
Projekt zrealizowany przez eq system obejmuje również prognozowanie dostępności operatorów oraz prognozowanie dostępności i zmienności kompetencji. Podczas planowania dostępności operatorów zebrano dane o nieobecnościach i ich przyczynach, aby opracować algorytmy predykcyjne umożliwiające tworzenie prognoz dostępności. Prognozy uwzględniają sezonowość, planowane urlopy i potencjalne wzmożenie absencji, co pozwala na elastyczne planowanie kalendarza pracy w systemie XPRIMER. W procesie planowania kompetencji operatorów przyjęto, że ich umiejętności są dynamiczne i zmieniają się w czasie. Na podstawie danych o aktualnym poziomie kompetencji, system generuje prognozy dotyczące ewolucji umiejętności, umożliwiając decydentom lepsze zarządzanie personelem poprzez precyzyjne prognozy zmienności kompetencji.
Projekt „Opracowanie oprogramowania do inteligentnego planowania i dystrybucji zadań operatorów produkcyjnych wspomaganego przez sztuczną inteligencję w modelu cyfrowej repliki (digital twin)" oferuje istotne korzyści dla firm produkcyjnych dzięki zaawansowanej integracji narzędzi sztucznej inteligencji i systemów IT. Optymalizacja przydziału zadań oraz monitorowanie tempa pracy operatorów za pomocą predykcyjnych modeli AI prowadzi do znacznego zwiększenia efektywności operacyjnej oraz poprawy jakości produkcji. Dzięki wykorzystaniu analizy historycznych danych dotyczących wydajności operatorów, możliwe jest precyzyjne prognozowanie przyszłych wyników produkcyjnych. To z kolei umożliwia lepsze planowanie i zarządzanie zasobami ludzkimi, minimalizując ryzyko przestojów i zwiększając płynność procesów produkcyjnych. Integracja z systemem planistycznym pozwala na automatyczne korygowanie planów produkcyjnych, co zwiększa elastyczność i adaptacyjność całego procesu produkcyjnego. Zastosowanie algorytmów predykcyjnych do monitorowania i zarządzania kompetencjami operatorów umożliwia dynamiczne dostosowywanie się do zmieniających się warunków i wymagań produkcyjnych. W efekcie przedsiębiorstwa mogą osiągnąć wyższą wydajność produkcyjną, lepszą jakość produktów oraz większe zadowolenie klientów.
Źródło: eq system
Modele prognozowania tempa pracy operatorów
Z myślą o maksymalizacji efektywności operacyjnej poprzez optymalizację przydziału zadań i monitorowanie tempa pracy operatorów jednym z elementów projektu realizowanego przez eq system "Opracowanie oprogramowania do inteligentnego planowania i dystrybucji zadań operatorów produkcyjnych wspomaganego przez sztuczną inteligencję w modelu cyfrowej repliki (digital twin)" było opracowanie narzędzi i modeli prognozowania tempa pracy operatorów. W celu rejestrowania postępów gromadzone są dane dotyczące łącznego czasu pracy operatorów, historycznych norm produkcyjnych zastosowanych w planie, dane dotyczące procesów produkcyjnych: czas trwania, ilość wyprodukowanych jednostek, dostępność operatorów w przeszłości oraz struktura ich pracy (czy to w zespołach, czy indywidualnie).
Na podstawie zgromadzonych danych rozwiązanie eq system pozwala na analizę efektywności poszczególnych procesów w przeszłości i prognozuje efektywność procesów produkcyjnych, wykorzystując informacje o dostępnych operatorach. Proces realizacji inteligentnego planowania i dystrybucji zadań operatorów produkcyjnych wspomaganego przez sztuczną inteligencję opracowany przez eq system opiera się na synergii systemów IT i precyzyjnym przepływie informacji. Projektowane interfejsy zakładają dwa główne scenariusze wykorzystania: bieżącą pracę brygadzisty/mistrza, który rozdysponowuje zadania do najlepiej dopasowanych pracowników realizujących optymalne tempo produkcji, oraz pracę planisty, który koryguje plany produkcyjne według informacji o prognozie tempa produkcji dla poszczególnych grup operatorów.
Integracja danych i elastyczność procesów
W ramach procesu, do systemu planującego i harmonogramującego ASPROVA APS dostarczane są dane generowane w platformie XPRIMER, obejmujące zarówno plan obsady (z modułu XPRIMER.HRM), technologię produkcji (z modułu XPRIMER.TCW) oraz struktury grup operatorów i realizację produkcji wynikającą z ewidencji produkcji (w XPRIMER.MES). Na podstawie historycznej realizacji produkcji przeprowadza się obliczenia modelu AI, prognozującego globalne tempo operatora. Te dane są analizowane w celu przewidywania przyszłych wyników. Rozpoczęcie planowania operacji produkcyjnych i analiza danych prognostycznych są sercem tego procesu, obejmując zadania związane z wykorzystaniem prognoz AI do dostosowania planów produkcji. Proces planowania, harmonogram produkcji oraz analiza danych modelu AI odbywa się w cyklach dostosowanych do specyfiki danej organizacji oraz działu produkcji, co pozwala na adaptację do zmieniających się warunków i optymalizację procesów produkcyjnych. Synergia systemów polega na integracji danych z różnych modułów (HRM, TCW, MES) oraz ich wykorzystaniu przez model AI do prognozowania tempa pracy operatorów. Integracja z systemem ASPROVA APS umożliwia korygowanie planów produkcyjnych, co zwiększa elastyczność i adaptacyjność całego procesu produkcyjnego. W rezultacie cały proces wspomagany przez sztuczną inteligencję pozwala na optymalizację przydziału zadań, zwiększenie efektywności pracy operatorów oraz lepsze zarządzanie zasobami, przekładając się na wyższą wydajność i jakość produkcji.
Prognozowanie efektywności procesów produkcyjnych
Drugi proces zrealizowany przez eq system w ramach projektu „Opracowanie oprogramowania do inteligentnego planowania i dystrybucji zadań operatorów produkcyjnych wspomaganego przez sztuczną inteligencję w modelu cyfrowej repliki (digital twin)" dotyczył prognozowania efektywności procesów produkcyjnych. Analiza historycznych danych umożliwia identyfikację wzorców wydajności operatorów, co jest podstawą do budowy modelu prognostycznego. Model ten przewiduje efektywność przyszłych procesów produkcyjnych. Dzięki temu można podnieść efektywność poszczególnych procesów produkcyjnych, co ma bezpośrednie przełożenie na ogólną wydajność zakładu. Dane wejściowe wykorzystywane w procesie obejmują historię wydajności produkcyjnej, plany produkcyjne z przeszłości, informacje o personelu pracującym przy produkcji, grafik dostępnych operatorów, informacje o ich zaangażowaniu i stopniu zaawansowania w zadaniach oraz szczegóły dotyczące używanej technologii. Te dane są kluczowe dla dokładnego modelowania i prognozowania przyszłej efektywności. Model AI generuje dwa rodzaje prognoz: prognozę uwzględniającą plan produkcyjny oraz prognozę bez planu produkcyjnego, która jest oparta na trendach wydajności pracownika. Dane zwracane z modelu AI są prezentowane w formularzach, które pokazują wydajność operatorów. Na tych interfejsach, dane wynikające z prognozy są uzupełniane danymi statystycznymi, co umożliwia kompleksową analizę i lepsze rozumienie wyników przez decydentów.
Zarządzanie zasobami ludzkimi z wykorzystaniem AI
Projekt zrealizowany przez eq system obejmuje również prognozowanie dostępności operatorów oraz prognozowanie dostępności i zmienności kompetencji. Podczas planowania dostępności operatorów zebrano dane o nieobecnościach i ich przyczynach, aby opracować algorytmy predykcyjne umożliwiające tworzenie prognoz dostępności. Prognozy uwzględniają sezonowość, planowane urlopy i potencjalne wzmożenie absencji, co pozwala na elastyczne planowanie kalendarza pracy w systemie XPRIMER. W procesie planowania kompetencji operatorów przyjęto, że ich umiejętności są dynamiczne i zmieniają się w czasie. Na podstawie danych o aktualnym poziomie kompetencji, system generuje prognozy dotyczące ewolucji umiejętności, umożliwiając decydentom lepsze zarządzanie personelem poprzez precyzyjne prognozy zmienności kompetencji.
Projekt „Opracowanie oprogramowania do inteligentnego planowania i dystrybucji zadań operatorów produkcyjnych wspomaganego przez sztuczną inteligencję w modelu cyfrowej repliki (digital twin)" oferuje istotne korzyści dla firm produkcyjnych dzięki zaawansowanej integracji narzędzi sztucznej inteligencji i systemów IT. Optymalizacja przydziału zadań oraz monitorowanie tempa pracy operatorów za pomocą predykcyjnych modeli AI prowadzi do znacznego zwiększenia efektywności operacyjnej oraz poprawy jakości produkcji. Dzięki wykorzystaniu analizy historycznych danych dotyczących wydajności operatorów, możliwe jest precyzyjne prognozowanie przyszłych wyników produkcyjnych. To z kolei umożliwia lepsze planowanie i zarządzanie zasobami ludzkimi, minimalizując ryzyko przestojów i zwiększając płynność procesów produkcyjnych. Integracja z systemem planistycznym pozwala na automatyczne korygowanie planów produkcyjnych, co zwiększa elastyczność i adaptacyjność całego procesu produkcyjnego. Zastosowanie algorytmów predykcyjnych do monitorowania i zarządzania kompetencjami operatorów umożliwia dynamiczne dostosowywanie się do zmieniających się warunków i wymagań produkcyjnych. W efekcie przedsiębiorstwa mogą osiągnąć wyższą wydajność produkcyjną, lepszą jakość produktów oraz większe zadowolenie klientów.
Źródło: eq system
Najnowsze wiadomości
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Najnowsze artykuły
5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata- a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".
Oferty Pracy
-
Młodszy konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant Microsoft Dynamics 365
-
Konsultant Wdrożeniowy Symfonia – księgowość
-
Microsoft Fabric Engineer (MFE)
-
Data/Business Analyst (PBI/Fabric)
-
CRM consultant
-
Starszy architekt systemów rozproszonych
-
Inżynier Zastosowań AI
Przeczytaj Również
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku o wartości sztucznej inteligencji decyduje nie jej „nowość”, ale zdolność do dostarczan… / Czytaj więcej
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Ponad 60% średnich przedsiębiorstw przemysłowych w Europie uważa, że tempo ich transformacji cyfrow… / Czytaj więcej
Nowa era komunikacji biznesowej, KSeF stał się faktem
Od 1 lutego 2026 roku, w Polsce z sukcesem rozpoczęła się nowa era elektronicznej komunikacji w biz… / Czytaj więcej
Co dziś decyduje o sukcesie projektów IT?
Według danych z analizy rynku IT w 2025 roku, 59% projektów jest ukończonych w ramach budżetu, 47%… / Czytaj więcej
Przemysł w 2026 roku: od eksperymentów do zdyscyplinowanego wdrażania AI
Rok 2026 będzie momentem przejścia firm produkcyjnych od pilotaży technologicznych do konsekwentnyc… / Czytaj więcej
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś… / Czytaj więcej

