Sztuczna inteligencja i chmura: Czy to zawsze najlepsze połączenie?
Katgoria: WIADOMOŚCI / Utworzono: 28 maj 2024
Coraz więcej firm dostrzega korzyści płynące z zastosowania sztucznej inteligencji. Co piąte przedsiębiorstwo w Polsce już wdrożyło rozwiązania AI, a 74% uważa, że technologia ta w znaczącym stopniu wpłynie na rozwój ich branży. Żeby w pełni odblokować jej potencjał przedsiębiorstwa rozwijają ekosystem IT o inne technologie, w tym usługi chmurowe. Ale chmura i sztuczna inteligencja to połączenie, które w biznesie nie zawsze wychodzi na dobre.
Usprawnienie procesów biznesowych (81%), szybszy rozwój innowacji (88%), a także wzrost przychodów (94%) – to główne korzyści korzystania z AI, na jakie wskazują polskie firmy. Zauważalna jest także poprawa jakości i wydajności pracy, przyspieszenie procesu wprowadzania produktu na rynek czy redukcja kosztów operacyjnych.
Kosztowna sztuczna inteligencja
Wykorzystanie AI przynosi korzyści, ale generuje również koszty – szczególnie na początku. Odpowiednio wyszkolone algorytmy AI wymagają ogromnej mocy obliczeniowej, co w większości przypadków może wiązać się z koniecznością modernizacji architektury IT i sprzętu w firmie. Odpowiednio trzeba też przechowywać dane „treningowe” oraz nimi zarządzać, z uwzględnieniem aspektów dotyczących bezpieczeństwa i zgodności z przepisami wewnętrznymi firmy czy regulacjami prawnymi. Dodatkowo należy uwzględnić potrzebę przeszkolenia pracowników i przekonania ich do stosowania narzędzi AI.
Szukając sprzymierzeńca, który pozwoli zoptymalizować wydatki ponoszone w procesie rozwoju sztucznej inteligencji, wiele firm stawia na rozwiązania chmurowe. Jak wynika z raportu Red Hat 2024 Global Tech Trends, przedsiębiorstwa kontynuują inwestowanie w chmurę, zwłaszcza w obszarach związanych z zarządzaniem środowiskiem chmurowym (59% wskazań), optymalizacją kosztów (43%) oraz automatyzacją usług w chmurze (36%).
Korzyści z korzystania z chmury
Chmura zapewnia potężną pulę zasobów obliczeniowych dostępnych na żądanie w modelu płatności tylko za te, które zostaną wykorzystane (pay-as-you-go). Umożliwia to firmom elastyczne dostosowanie infrastruktury do zmieniających się potrzeb i sposobu pracy AI.
Skalowalność zasobów w chmurze pozwala dowolnie zwiększać lub zmniejszać ich dostępną ilość, dostarczając zawsze gotowe i spójne środowisko programowania oraz możliwość wdrażania narzędzi AI w chmurze hybrydowej czy środowisku wielochmurowym. Dla biznesu eliminuje to konieczność instalowania, konfigurowania i utrzymywania dodatkowej infrastruktury za każdym razem, gdy zmieniają się potrzeby.
Zastosowanie chmury zapewnia zespołom przedsiębiorstwa dostęp do najnowszych informacji zgromadzonych w jednym miejscu, bez względu na ich rozproszoną lokalizację i model pracy. Ułatwia to też efektywne i bardziej precyzyjne szkolenie modeli AI.
Nie w każdym scenariuszu chmura się sprawdzi
Wykorzystanie chmury obliczeniowej demokratyzuje dostęp do AI pozwalając każdej firmie, niezależnie od wielkości, na rozpoczęcie przygody ze sztuczną inteligencją. Za pośrednictwem usług chmurowych można taniej testować nowe pomysły, prototypować narzędzia IT i szybciej wprowadzać innowacje do użytku. Jednak przedsiębiorstwom, które chcą wdrażać zaawansowane projekty AI o dużym stopniu złożoności, chmura bardzo szybko przestanie się opłacać. Wysokorozwinięte modele sztucznej inteligencji trenowane są na ogromnych zbiorach danych rosnących w wykładniczym tempie. Do szkolenia wymagają zastosowania potężnej mocy procesorów graficznych oraz ciągłej aktualizacji; w przeciwnym razie mogą dawać niemiarodajne, a nawet fałszywe wyniki (zjawisko to jest potocznie określane jako halucynacje modeli AI).
Istotną kwestią, którą należy wziąć pod uwagę przed inwestycją w rozwój sztucznej inteligencji jest także bezpieczeństwo danych, na których trenowane są modele AI. Coraz bardziej rygorystyczne przepisy unijne i regulacje prawne nakładają na firmy obowiązek świadomego zarządzania gromadzonymi danymi. Przedsiębiorstwa, które chcą mieć pewność, że ich dane przechowywane są w Polsce lub na terenie UE muszą sprawdzić, czy rozwiązania chmurowe zapewniają im odpowiedni poziom suwerenności danych.
A może jednak infrastruktura własna?
Firmy, które zamierzają sztuczną inteligencję wykorzystywać kompleksowo powinny rozważyć inwestycję w rozwój własnej infrastruktury IT. Rozbudowa lokalnego środowiska (on premise) nie zawsze musi wiązać się z dużymi początkowymi nakładami finansowymi i można je skutecznie zmniejszać, na przykład decydując się na dzierżawę maszyn czy wynajmując odpowiednią przestrzeń w serwerowni. Jednocześnie dzięki temu, że ponoszone koszty są stałe i przewidywalne, zarzadzanie budżetem IT staje się znacznie prostsze.
Własne centra danych to również pewność, że dane wykorzystywane na potrzeby trenowania modeli AI są przechowywane i przetwarzane w bezpiecznym, odpowiednio odizolowanym środowisku, spełniającym wymagania stawiane przez regulatorów. Pełna kontrola nad infrastrukturą i danymi pozwala też lepiej chronić je przed cyberatakami. W obliczu coraz częściej podnoszonych kwestii prywatności danych i rosnącej fali zagrożeń cybernetycznych to podejście zyskuje na popularności. Z raportu Red Hat wynika, że połowa aplikacji budowanych i zarządzanych przez wewnętrzne działy IT firm funkcjonuje w środowisku chmury hybrydowej (50%), podczas gdy 40% jest utrzymywanych lokalnie. Tylko w 10% przypadków wykorzystywana jest chmura publiczna.
Autor: Wojciech Furmankiewicz, dyrektor Red Hat ds. technologii i rozwiązań w regionie Europy Środkowo-Wschodniej
Kosztowna sztuczna inteligencja
Wykorzystanie AI przynosi korzyści, ale generuje również koszty – szczególnie na początku. Odpowiednio wyszkolone algorytmy AI wymagają ogromnej mocy obliczeniowej, co w większości przypadków może wiązać się z koniecznością modernizacji architektury IT i sprzętu w firmie. Odpowiednio trzeba też przechowywać dane „treningowe” oraz nimi zarządzać, z uwzględnieniem aspektów dotyczących bezpieczeństwa i zgodności z przepisami wewnętrznymi firmy czy regulacjami prawnymi. Dodatkowo należy uwzględnić potrzebę przeszkolenia pracowników i przekonania ich do stosowania narzędzi AI.
Szukając sprzymierzeńca, który pozwoli zoptymalizować wydatki ponoszone w procesie rozwoju sztucznej inteligencji, wiele firm stawia na rozwiązania chmurowe. Jak wynika z raportu Red Hat 2024 Global Tech Trends, przedsiębiorstwa kontynuują inwestowanie w chmurę, zwłaszcza w obszarach związanych z zarządzaniem środowiskiem chmurowym (59% wskazań), optymalizacją kosztów (43%) oraz automatyzacją usług w chmurze (36%).
Korzyści z korzystania z chmury
Chmura zapewnia potężną pulę zasobów obliczeniowych dostępnych na żądanie w modelu płatności tylko za te, które zostaną wykorzystane (pay-as-you-go). Umożliwia to firmom elastyczne dostosowanie infrastruktury do zmieniających się potrzeb i sposobu pracy AI.
Skalowalność zasobów w chmurze pozwala dowolnie zwiększać lub zmniejszać ich dostępną ilość, dostarczając zawsze gotowe i spójne środowisko programowania oraz możliwość wdrażania narzędzi AI w chmurze hybrydowej czy środowisku wielochmurowym. Dla biznesu eliminuje to konieczność instalowania, konfigurowania i utrzymywania dodatkowej infrastruktury za każdym razem, gdy zmieniają się potrzeby.
Zastosowanie chmury zapewnia zespołom przedsiębiorstwa dostęp do najnowszych informacji zgromadzonych w jednym miejscu, bez względu na ich rozproszoną lokalizację i model pracy. Ułatwia to też efektywne i bardziej precyzyjne szkolenie modeli AI.
Nie w każdym scenariuszu chmura się sprawdzi
Wykorzystanie chmury obliczeniowej demokratyzuje dostęp do AI pozwalając każdej firmie, niezależnie od wielkości, na rozpoczęcie przygody ze sztuczną inteligencją. Za pośrednictwem usług chmurowych można taniej testować nowe pomysły, prototypować narzędzia IT i szybciej wprowadzać innowacje do użytku. Jednak przedsiębiorstwom, które chcą wdrażać zaawansowane projekty AI o dużym stopniu złożoności, chmura bardzo szybko przestanie się opłacać. Wysokorozwinięte modele sztucznej inteligencji trenowane są na ogromnych zbiorach danych rosnących w wykładniczym tempie. Do szkolenia wymagają zastosowania potężnej mocy procesorów graficznych oraz ciągłej aktualizacji; w przeciwnym razie mogą dawać niemiarodajne, a nawet fałszywe wyniki (zjawisko to jest potocznie określane jako halucynacje modeli AI).
Istotną kwestią, którą należy wziąć pod uwagę przed inwestycją w rozwój sztucznej inteligencji jest także bezpieczeństwo danych, na których trenowane są modele AI. Coraz bardziej rygorystyczne przepisy unijne i regulacje prawne nakładają na firmy obowiązek świadomego zarządzania gromadzonymi danymi. Przedsiębiorstwa, które chcą mieć pewność, że ich dane przechowywane są w Polsce lub na terenie UE muszą sprawdzić, czy rozwiązania chmurowe zapewniają im odpowiedni poziom suwerenności danych.
A może jednak infrastruktura własna?
Firmy, które zamierzają sztuczną inteligencję wykorzystywać kompleksowo powinny rozważyć inwestycję w rozwój własnej infrastruktury IT. Rozbudowa lokalnego środowiska (on premise) nie zawsze musi wiązać się z dużymi początkowymi nakładami finansowymi i można je skutecznie zmniejszać, na przykład decydując się na dzierżawę maszyn czy wynajmując odpowiednią przestrzeń w serwerowni. Jednocześnie dzięki temu, że ponoszone koszty są stałe i przewidywalne, zarzadzanie budżetem IT staje się znacznie prostsze.
Własne centra danych to również pewność, że dane wykorzystywane na potrzeby trenowania modeli AI są przechowywane i przetwarzane w bezpiecznym, odpowiednio odizolowanym środowisku, spełniającym wymagania stawiane przez regulatorów. Pełna kontrola nad infrastrukturą i danymi pozwala też lepiej chronić je przed cyberatakami. W obliczu coraz częściej podnoszonych kwestii prywatności danych i rosnącej fali zagrożeń cybernetycznych to podejście zyskuje na popularności. Z raportu Red Hat wynika, że połowa aplikacji budowanych i zarządzanych przez wewnętrzne działy IT firm funkcjonuje w środowisku chmury hybrydowej (50%), podczas gdy 40% jest utrzymywanych lokalnie. Tylko w 10% przypadków wykorzystywana jest chmura publiczna.
Autor: Wojciech Furmankiewicz, dyrektor Red Hat ds. technologii i rozwiązań w regionie Europy Środkowo-Wschodniej
Najnowsze wiadomości
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Najnowsze artykuły
5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata- a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".
Oferty Pracy
-
Młodszy konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant Microsoft Dynamics 365
-
Konsultant Wdrożeniowy Symfonia – księgowość
-
Microsoft Fabric Engineer (MFE)
-
Data/Business Analyst (PBI/Fabric)
-
CRM consultant
-
Starszy architekt systemów rozproszonych
-
Inżynier Zastosowań AI
Przeczytaj Również
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku o wartości sztucznej inteligencji decyduje nie jej „nowość”, ale zdolność do dostarczan… / Czytaj więcej
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Ponad 60% średnich przedsiębiorstw przemysłowych w Europie uważa, że tempo ich transformacji cyfrow… / Czytaj więcej
Nowa era komunikacji biznesowej, KSeF stał się faktem
Od 1 lutego 2026 roku, w Polsce z sukcesem rozpoczęła się nowa era elektronicznej komunikacji w biz… / Czytaj więcej
Co dziś decyduje o sukcesie projektów IT?
Według danych z analizy rynku IT w 2025 roku, 59% projektów jest ukończonych w ramach budżetu, 47%… / Czytaj więcej
Przemysł w 2026 roku: od eksperymentów do zdyscyplinowanego wdrażania AI
Rok 2026 będzie momentem przejścia firm produkcyjnych od pilotaży technologicznych do konsekwentnyc… / Czytaj więcej
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś… / Czytaj więcej

