Przejdź do głównej treści

Business Intelligence - zawirowania pojęciowe

Katgoria: BUSINESS INTELLIGENCE / Utworzono: 07 styczeń 2019
Business Intelligence - zawirowania pojęciowe

Dynamiczny rozwój oraz coraz większa popularność rozwiązań analityki biznesowej nie tylko w wielkich organizacjach, ale także w MŚP doprowadziły do rozpowszechnienia się bogatej i niejednorodnej terminologii. W efekcie różnych pojęć używają finansiści, controllerzy, analitycy i specjaliści IT. Zakładamy, że wzajemnie się rozumiemy, ale czy tak rzeczywiście jest?

REKLAMA
ERP-VIEW.PL- STREAMSOFT

Dlaczego takie zamieszanie?

Zróżnicowanie pojęciowe wynika z kilku faktów:

  • pojęcia tworzone i promowane są przez różne środowiska (dostawcy rozwiązań, ośrodki akademickie i naukowe, użytkownicy, analitycy rynku),
  • funkcjonalność zmienia się bardzo szybko,
  • na te same funkcjonalności spogląda inaczej biznes (menedżerowie różnych działów), a inaczej ,,informatyka” w firmie.

Dostawcy rozwiązań – zwłaszcza ci globalni – starają się wyeksponować silne strony swoich rozwiązań. Jeden dostawca będzie więc podkreślał w stosowanej terminologii określenia nawiązujące do analityki bo w tym widzi swoją przewagę. Inny może ciągnąć w stronę wizualizacji, a jeszcze inny w stronę raportowania. Czasem jest to jakiś charakterystyczny termin kojarzący się z danym produktem lub firmą. Gdy zadomowił się termin Business Intelligence, dwie globalne firmy SAS i Teradata lansowały rozszerzenie tej terminologii o określenia Customer Intelligence, Risk Intelligence i inne pokrewne.

Ośrodki naukowe natomiast są zwykle mniej odporne na zmiany. Terminy opracowane przez jakiegoś profesora żyją przez lata, choć rzeczywistość się zmienia i to w tym obszarze zmienia bardzo szybko. Pewne terminy pochodzą nawet nie od samych dostawców, ale od użytkowników. Zdarza się, że oni wyprzedzają tych pierwszych. Rolę porządkującą powinny zatem przejąć firmy analizujące rynek, ale one także muszą się wyróżnić, podkreślić swoją odrębność. Przez lata więc IDC lansowało raczej określenie Business Analytics, Gartner analizował platformy Business Intelligence, a Forrester platformy Enterprise Business Intelligence.

Przykłady spotykanych obecnie pojęć

  • BI (Business Intelligence) – Termin pierwszy raz użyty w 1865 r. przez Richards M. Devensa w Cyclopaedia of Commercial and Business Anecdotes do opisania jak pewien bankier zyskał dzięki otrzymaniu i wykorzystaniu informacji o środowisku zewnętrznym wcześniej niż jego konkurenci. W 1958 r. Hans P. Luhn z IBM użyl terminu Business Intelligence do określenia zdolności wykorzystania posiadanych informacji i ich wzajemnych zależności w celu podjęcia działań skierowanych na realizację celu. Dzisiejszy termin BI zaproponowany został przez Howarda Dresnera (późniejszego analityka Gartner) w 1989 r. jako łączący metody i koncepcje usprawniające proces podejmowania decyzji poprzez wykorzystanie systemów wspierających opartych na faktach. Termin ten zaczął być popularny pod koniec lat 90.
  • CPM – Corporate Performance Management – zarządzanie wydajnością firmy, to termin bardzo pojemny obejmujący wszystkie technologie, narzędzia, praktyki, metodyki i miary służące do zbierania i zatwierdzania informacji. Może zatem on zawierać planowanie/budżetowanie, prognozowanie czy kluczowe wskaźniki efektywności (KPI), albo wizualnie przedstawione Zrównoważone Karty Wyników (BSC) poprzez kokpity menedżerskie. Czasem stosowana jest nazwa EPM – Enterprise Performance Management.
  • Business Analytics – analityka biznesowa, termin promowany przez IDC, często stosowany zamiennie z Business Intelligence. Niektórzy jednak podkreślają, że analityka biznesowa w większym zakresie wykorzystuje metody statystyczne (także analitykę zaawansowaną) i nie ogranicza się do spójnego zestawu wskaźników służących do pomiaru wyników, ale stara się rozwijać analizy i poszukiwać coraz pełniejszego zrozumienia tych wyników. Podkreślają oni więc, że BI poprzez zapytania, raportowanie, przetwarzanie analityczne OLAP i alerty odpowiada na pytania: co się wydarzyło, jak często, ile, gdzie jest problem i jakie są potrzebne działania. Natomiast analityka biznesowa sięgając głębiej i wykorzystując kolejne narzędzia i techniki może odpowiedzieć na pytania dlaczego tak się stało i co zrobić jeśli tendencje się utrzymują. Przewiduje także co następnie się wydarzy i co mogłoby wydarzyć się najlepszego (optymalizacja). Inaczej BI jest niezbędny do prowadzenia biznesu, a BA do wprowadzania w nim zmian.
  • Advanced Analytics – analityka zaawansowana, to analizowanie danych przy wykorzystaniu zaawansowanych technik i narzędzi, które nie występują w typowych rozwiązaniach BI. Dotyczy to m.in. zastosowania w biznesie takich technik, jak analityka predykcyjna, data/text mining, sieci neuronowe, analiza skupień czy zaawansowane analizy statystyczne.
  • DW (Data Warehouse) – już w latach 70. Bill Inmon, uznawany za „ojca hurtowni danych” wprowadza to pojęcie. Koncepcja hurtowni danych pochodzi z końca lat 80. gdy 2 naukowców IBM stworzyło „hurtownię danych biznesowych”. Celem było dostarczenie modelu architektury przepływu dużych ilości danych oraz rozwiązanie związanych, z tym problemów: wysokie koszty przetwarzania i brak możliwości wyciągania wniosków. Chodziło o ułatwienie i zoptymalizowanie procesu oraz uproszczenie działania na danych historycznych.
  • Data Mart – zawężona, tematyczna hurtowania danych, np. do jakiejś części organizacji (np. HR) lub jakiejś funkcjonalności. Może to być np. data mart budżetowy, czyli minihurtownia danych gromadząca jedynie dane wykorzystywane w procesie planowania/budżetowania. Taki data Mart (minihurtowania) może być elementem hurtowni danych lub stanowić oddzielną jednostkę.
  • Składnica danych – pojęcie najczęściej stosowane jako polskojęzyczny odpowiednik Data Mart lub ODS (Operational Data Store) jako operacyjna składnica danych. Dziś pojęcie coraz rzadziej stosowane.
  • DSS (Decision Support System) – systemy wspierające podejmowanie decyzji, których początki sięgają lat 60., a rozwijane były w połowie lat 80. Z założenia były to modele wspierane komputerowo do podejmowania decyzji i planowania. Dzisiejszy BI pochodzi bezpośrednio z DSS.
  • MIS/EIS – Management/Executive Information System – określenia powszechnie używane w dużych przedsiębiorstwach, w których istniał dział zbierający i analizujący dane z różnych jednostek organizacji, a następnie dostarczający raporty dla zarządu. Terminy te odnoszą się zatem do BI zwłaszcza w okresie, gdy rozwiązania BI były drogie i skomplikowane i jedynie wyspecjalizowana jednostka zajmowała się generowaniem raportów dla zarządu. W niektórych organizacjach były działy o nazwie MIS oraz odpowiednie stanowiska.
  • BICC – Business Intelligence Competency Center – termin odnoszący się do zespołu osób, które związane są w danej organizacji z BI zarówno od strony technologicznej, jak i merytorycznej. Zespół ten odpowiedzialny jest za rozwój, strategię wykorzystania oraz priorytety BI, a także określa wymagania, np. w zakresie jakości danych czy dostępu do nich oraz promuje BI i jego wykorzystanie w organizacji.
  • Big Data – termin przez niektórych stosowany jako współczesny, a więc bardziej nowoczesny BI. W rzeczywistości odnosi się on do przetwarzania i analizowania dużych, zmiennych i różnorodnych zbiorów danych. Takie analizy umożliwia jedynie współczesna zaawansowana technologia. Chodzi tutaj nie tylko o dane ustrukturyzowane, ale także nieustrukturyzowane, np. głos czy obraz. Nie chodzi więc o proste analizy i stosowanie tego terminu zamiennie z BI, choć dość częste, jest błędne. Granica nie jest jednak wyraźna, bo jak duże muszą być dane billingowe w telekomunikacji, aby był to już Big Data, a nie BI? Firma analityczna META Group (przejęta przez Gartner) w 2001 r. w swoim raporcie zaproponowała model 3V – VOLUME (duża ilość danych), VELOCITY (duża zmienność danych) oraz VARIETY (duża różnorodność danych). Gartner dodał do tego jeszcze VALUE rozszerzając model do 4V i podkreślając potrzebę weryfikacji przyjętych hipotez.
  • Data Science – wraz z pojawieniem się Big Data i coraz bardziej zaawansowanych analiz pojawił się termin Data Science oraz Data Scientist określający zawód osoby zajmującej się analizą danych, zwłaszcza danych nieustrukturyzowanych czy Big Data. Termin ten został spopularyzowany przez Harvard Business Review w 2012 r. Właściwie chodzi o współczesnego analityka danych w świecie Big Data.
  • Data Mining – termin określający techniki i metody służące eksploracji danych wywodzące się zwłaszcza z badań nad sztuczna inteligencją. Niektóre to metody statystyczne inne to sieci neuronowe, metody uczenia maszynowego, logika rozmyta czy zbiory przybliżone. Termin Data Mining bez wielkiego powodzenia starano się zastąpić polskim drążenie danych, wydobywanie danych czy ekstrakcja danych.
  • ETL/ELT (od Extract – Transform – Load) – skrót ETL od angielskich odpowiednich słów wydobycie (pozyskanie), przekształcenie i załadowanie w odniesieniu do danych znajdujących się w systemach ewidencyjnych (ERP, bazy danych, CRM itd.) przygotowywanych do załadowania w hurtowni danych do dalszej analizy. Można spotkać wersje ETL oraz ELT w zależności od tego czy przekształcenie danych odbywa się przed czy po ich załadowaniu. Czasem stosuje się także określenie ETLQ gdzie Q oznacza jakość danych, a więc proces czyszczenia danych.
  • OLAP (On-Line Analytical Processing) – pojęcie OLAP powstało przez modyfikację pojęcia OLTP (Online Transaction Processing). Systemy OLTP charakteryzują się dużą ilością prostych transakcji zapisu i odczytu, a nacisk położony jest na zachowanie integralności danych w środowisku wielodostępowym oraz efektywność jako liczbę transakcji w jednostce czasu. Systemy transakcyjne zwane także ewidencyjnymi dostarczają danych do hurtowni danych. Systemy analityczne (OLAP) charakteryzują się stosunkowo nielicznymi, ale złożonymi transakcjami odczytu. Tutaj miarą efektywności jest czas odpowiedzi. Z pojęciem OLAP związane są kostki OLAP (OLAP cube), a więc struktura danych, pozwalająca na szybką analizę danych. Dane przechowywane w kostkach pokonują ograniczenia relacyjnych (transakcyjnych) baz danych, a same kostki są rozszerzeniem dwuwymiarowej płaskiej tabeli o inne zdefiniowane wymiary.
  • Data Discovery – to jeden z najdynamiczniej rosnących segmentów BI (Tableau, Qlik, Sisense itd.). To narzędzia łatwe w obsłudze, które służą nie tyle do tworzenia raportów i kokpitów oraz udostępnianiu ich zgodnie z uprawnieniami, co „przyglądaniu się” danym bez z góry założonej tezy i poszukiwaniu w wizualizacjach interesujących odchyleń. Służą one dużym organizacjom do szybkich analiz, czasem danych znajdujących się bezpośrednio w systemach ewidencyjnych, a nie w hurtowni danych. Dla mniejszych organizacji, które jeszcze nie dojrzały do pełnych rozwiązań BI, służą one jako podstawowe narzędzie do analiz.

Krytycy uważają, że BI to po prostu rozszerzenie raportowania biznesowego, które rozwinęło się, gdy pojawiły się coraz łatwiejsze w użyciu narzędzia do analizowania danych. Gdy narzędzia umożliwiły analizowanie większych, bardziej złożonych zbiorów danych, a także danych nieustrukturyzowanych pojawiło się kolejne określenie – Big Data. Uważają więc oni, że zarówno BI jak i Big Data to jedynie marketingowe buzzword, a nie nowe koncepcje.

Czego można się więc spodziewać w zakresie rozwoju zagmatwania pojęciowego towarzyszącego rozwojowi narzędzi? Pewne pojęcia zapewne odejdą do historii i zostaną wyparte z wykorzystywanej terminologii. Można się spodziewać uproszczenia terminologii, bo sama technologia podlega takiemu uproszczeniu. Użytkownicy rozwiązań analityki biznesowej to coraz częściej menadżerowie różnych działów, którzy bardziej zainteresowani są wartością jakie przynosi im narzędzie, a nie tym jak nazywają się poszczególne funkcjonalności czy komponenty rozwiązania. Nie należy jednak wykluczać, ze pojawi się nowa technologia, łatwiejsza, prostsza i usuwająca w cień to co dziś wydaje się być standardem.

Autor: Grzegorz Rawicz-Mańkowski - Business Development Manager w Controlling Systems
Źródło: www.controlling-systems.pl

Najnowsze wiadomości

Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.

Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
BPSCEuropejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.



Najnowsze artykuły

5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata — a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".

Przeczytaj Również

Real-Time Intelligence – od trendu do biznesowego must-have

Sposób prowadzenia działalności gospodarczej dynamicznie się zmienia. Firmy muszą stale dostosowywa… / Czytaj więcej

EPM – co to jest? Czy jest alternatywą dla BI?

Nowoczesne systemy BI i EPM dostarczają wiedzy potrzebnej do efektywnego zarządzania firmą. Czy zna… / Czytaj więcej

W jaki sposób firmy zwiększają swoją odporność na zmiany?

Do zwiększenia odporności na zmiany, konieczna jest pełna kontrola nad codziennymi procesami zapewn… / Czytaj więcej

Dlaczego systemy kontrolingowe są potrzebne współczesnym firmom?

Narzędzia Corporate Performance Management (CPM) pozwalają na przyśpieszenie tempa podejmowania dec… / Czytaj więcej

Hurtownie danych – funkcje i znaczenie dla BI

Przepisów na sukces biznesu jest na rynku wiele. Nie ulega jednak wątpliwości, że jednym z kluczowy… / Czytaj więcej

Po co dane w handlu? Okazuje się, że ich analityka może dać nawet 30 proc. większe zyski!

Jak wynika z badania firmy doradczej Capgemni, producenci FMCG oraz firmy związane z handlem detali… / Czytaj więcej