Przejdź do głównej treści

5 powodów, dla których branża retail potrzebuje analizy danych

Katgoria: BUSINESS INTELLIGENCE / Utworzono: 06 czerwiec 2018
5 powodów, dla których branża retail potrzebuje analizy danych
Wykorzystanie big data w sektorze retail przynosi firmom wymierne korzyści – wynika z badania przeprowadzonego przez The Economist Intelligence Unit na zlecenie Wipro. 64 proc. osób biorących w nim udział, które wdrożyło tę technologię, uważa, że wykorzystanie big data miało wpływ na zwiększenie zysków w obszarze zarządzania relacjami z klientami, a ponad płowa jest zdania, że przyczyniło się do zwiększenia sprzedaży. Na zbieraniu i analizowaniu informacji dotyczących zachowania i zwyczajów zakupowych konsumentów korzystają również sami klienci, do których marki kierują spersonalizowaną ofertę handlową. Nie tylko bowiem firmom zależy na zyskaniu lojalnych nabywców, ale również konsumenci poszukują zaufanych i sprawdzonych sprzedawców.

REKLAMA
ERP-VIEW.PL- STREAMSOFT
 
Big data, wielkie oczekiwania

Dane zebrane przez The Economist Intelligence Unit znajdują również potwierdzenie w badaniu JDA Software Group i PwC przeprowadzonym wśród menedżerów z sektora retail. Aż 86 proc. respondentów uznało technologię big data za jedną z priorytetowych w ustalaniu strategii biznesowej w swojej firmie na najbliższe dwanaście miesięcy. Dlaczego big data zadomowiła się na dobre nie tylko w sektorze retail, ale w szeroko rozumianym handlu?

Rozpowszechnienie się globalnej sieci komputerowej Internet, do której dostęp ma dzisiaj już ponad 4 mld osób na całym świecie, przyniosło ze sobą możliwość gromadzenia i przetwarzania dużej ilości danych generowanych przez jej użytkowników. Kiedy opracowano odpowiednie metody analizy zbieranych informacji, dostrzeżono potencjał big data w odkrywaniu wzorców zachowań osób kupujących online, których z roku na rok przybywa. Jednak analiza kluczowych haseł wpisywanych w wyszukiwarki, by zdobyć informacje o tym, jakich towarów poszukują konsumenci w sieci, a także poza nią, przestała być efektywna. Jak zaznacza Krzysztof Grabowski, ekspert ds. technologii, rozwój branży IT, korzystanie przez konsumentów ze smartfonów, (jak szacuje Zenith, w tym roku będzie to już 2/3 populacji), tabletów, smartwatchów i innych urządzeń, które mają połączenie Internetem, a także ich obecność w mediach społecznościowych, gdzie mają stały kontakt z ulubionymi markami, każdego dnia generuje masowe ilości danych.
Analiza zachowania konsumentów w dzisiejszym, cyfrowym świecie stanowi zupełnie nowy poziom pracy z danymi. Dzięki informacjom pozyskiwanym z „inteligentnych” urządzeń, które są również „uzbrojone” w technologię GPS, mediów społecznościowych i innych śladów pozostawionych przez klientów w sieci (np. ich historia zakupowa czy opinie o markach umieszczane na forach internetowych), obecnie możliwa jest analiza reakcji nie tylko wybranych grup klientów, ale nawet konkretnych osób. Takie podejście nazwano indywidualizacją, a tworzenie oferty zakupowej na podstawie wniosków wyciągniętych z wcześniejszych kontaktów danego konsumenta z marką – personalizacją – dodaje Grabowski.
Dzięki zindywidualizowanemu podejściu do analizowania zachowania konsumentów, oprócz takich kwestii jak, co i kiedy kupujemy, możliwe stało się również zbadanie, w jaki sposób dokonujemy zakupów. – Wiedza o tym, w jaki sposób klienci podejmują decyzje zakupowe, impulsywnie, emocjonalnie, czy też w przemyślany i racjonalny sposób, pozwala markom przewidywać, i to coraz częściej w bezbłędny sposób, przyszłe działania konsumentów – zauważa Krzysztof Grabowski, ekspert ds. technologii.

Big data in store

Analiza big data wspiera e-commerce i działania marketingowe prowadzone przez firmy w Internecie, ale nie tylko. Również te marki, które postawiły na sprzedaż stacjonarną, zbierają i analizują cenne informacje o swoich obecnych i potencjalnych klientach pozostawione przez nich w sieci. Media społecznościowe, aplikacje zakupowe, ruch na oficjalnej stronie www danego brandu, czy reakcje konsumentów na reklamy internetowe, są cennym źródłem informacji dla branży handlu detalicznego. W ostatnim czasie coraz więcej firm decyduje się na zbieranie danych o swoich klientach bezpośrednio w punktach sprzedaży.

Tylko podczas jednej wizyty w sklepie każda osoba jest w stanie wygenerować wiele unikatowych wskaźników, które są zbierane np. czujniki i kamery rozmieszczone w punkcie sprzedaży. Gdy zostaną odpowiednio skategoryzowane, a następnie przeanalizowane, dostarczają informacji o tym, co przyciąga klientów do sklepu danej marki, na jakie towary zwracają szczególną uwagę, ile czasu zajmuje im dokonanie wyboru i jak go dokonują, oraz jaką metodę płatności wybierają najczęściej, czyli po prostu o tym, jak wygląda ich cała ścieżka zakupowa.
Zbieranie informacji o klientach, którzy osobiście zrobili zakupy w sklepie, dla marek z branży retail może być bardziej wartościowe niż tylko opieranie się na aktywności konsumentów w sieci, ponieważ w tym pierwszym przypadku dochodzą dodatkowe czynniki, które można wziąć pod uwagę w analizach kupujących. Są to np.: mimika klienta, jego reakcja na poszczególne produkty i sposób ich ustawienia w sklepie, nawet na występujące w nim oświetlenie, czy zapach, reakcja na obsługę i inne elementy, które wpływają na to, czy klient dokona zakupów w danym punkcie lub też nie i czy w ogóle powróci do niego w przyszłości – wyjaśnia Krzysztof Grabowski, ekspert ds. technologii.
5 najważniejszych powodów, aby zainteresować się big data

Dzięki połączeniu odpowiednich metod zbierania i analizowania zgromadzanych informacji, firmy z branży handlu detalicznego z dużym prawdopodobieństwem mogą określać, co kupią klienci, odwiedzając dany sklep w przyszłości. Ale to nie jedyne korzyści, na które można liczyć, wdrażając technologię big data:

1. Profilowanie klientów i przygotowywanie dla nich spersonalizowanej oferty produktowej. Chociaż każda firma wchodząca na rynek powinna zacząć swoją działalność od określenia grupy docelowej, do której chce dotrzeć ze swoimi produktami lub usługami, to czasami dopiero analiza zachowania i historii zakupowej konsumentów pozwala odpowiedzieć na pytanie, kto właściwie jest klientem danej marki, czy nawet jej jednego wybranego sklepu. Poznanie tych informacji pozwoli na przygotowanie dla nich spersonalizowanej oferty produktowej, a także na efektywniejsze dopasowanie stosowanych narzędzi marketingowych. Takie działania prowadzą do zwiększenia zysków ze sprzedaży i zdobycia lojalnych klientów.

2. Prognozowanie trendów na długo przed ich nadejściem, czyli efektywnie kierowanie popytem oraz łańcuchem dostaw. Regularna analiza zachowania klientów, a dokładniej skupienie się na tym, jakie produkty chętnie wybierają, a na które nie zwracają w ogóle uwagi, pozwala nie tylko z odpowiednim wyprzedzeniem przewidywać trendy, co ma znaczenie np. w branży modowej. Określenie popytu umożliwia również zaplanowanie dostaw asortymentu do sklepu w odpowiednim czasie, czyli np. wyeliminowanie strat finansowych z powodu niesprzedanego towaru, jeżeli nie spotka się z zainteresowaniem kupujących. Prognozowanie trendów rynkowych pozwala na zachowanie przewagi konkurencyjnej, ale również przewidzieć spadki koniunktury i tym samym dopasować prowadzone działania biznesowe do aktualnej sytuacji na rynku.

3. Zwiększenie sprzedaży wybranego asortymentu lub/i zyskanie lojalnej grupy klientów. Jak to się robi, pokazała amerykańska sieć hipermarketów Target. Analizując zachowanie wybranej grupy klientów – kobiet, a także to, jak okresowo zmienia się jej koszyk zakupowy, firma opracowała metodę rozpoznawania kobiet w ciąży. Zebrane dane nie tylko pozwoliły określić, co najczęściej kupują przyszłe matki, ale nawet przewidywany termin porodu, a co za tym idzie, przygotować spersonalizowaną ofertę produktową dla klientek, które rozpoczęły nowy etap życia i zmieniły swoje potrzeby zakupowe.

4. Planowanie ekspozycji sklepowej, w taki sposób, aby zwiększała sprzedaż. Chodzi np. o ustawianie produktów, które cieszą się największym zainteresowaniem w najbardziej wyeksponowanych punktach w sklepie, aby konsumenci mieli pewność, że z łatwością znajdą w nim ulubione rzeczy lub zwrócenie szczególnej uwagi klientów na ten asortyment, który „gorzej się sprzedaje”, by zachęcić odwiedzających sklep do jego zakupu.

5. Ograniczenie strat finansowych z powodu kradzieży. System czujników i kamer, w który wyposażony jest sklep, pomagający analizować reakcje klientów, pozwala również na wyeliminowanie podejrzanych zachowań, czyli po prostu rozpoznać złodzieja.

Analiza zachowania i zwyczajów zakupowych klientów branży retail pozwala na uzyskanie wartościowych informacji, które nie są oparte na założeniach, ale na wskaźnikach, które posiadają odzwierciedlenie w rzeczywistości i realnie przekładają się na zwiększenie sprzedaży, czy umożliwiają optymalizację kosztów prowadzenia biznesu. W tej sytuacji wygranymi są również konsumenci.
Analiza informacji uzyskanych o konsumentach jest już powszechnie wykorzystywana do przygotowywania dla nich oferty handlowej „skrojonej na miarę”. To sygnał, że dana marka myśli o potrzebach swoich klientów. O tym, jak jest to istotna kwestia, przekonał się każdy, kto wyszedł ze sklepu rozczarowany, nie mogąc dokonać zakupu, z powodu braku asortymentu, który opowiadałby określonym oczekiwaniom – komentuje Krzysztof Grabowski, ekspert ds. technologii.

Najnowsze wiadomości

Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.

Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
BPSCEuropejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.



Najnowsze artykuły

5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata — a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".

Przeczytaj Również

Real-Time Intelligence – od trendu do biznesowego must-have

Sposób prowadzenia działalności gospodarczej dynamicznie się zmienia. Firmy muszą stale dostosowywa… / Czytaj więcej

EPM – co to jest? Czy jest alternatywą dla BI?

Nowoczesne systemy BI i EPM dostarczają wiedzy potrzebnej do efektywnego zarządzania firmą. Czy zna… / Czytaj więcej

W jaki sposób firmy zwiększają swoją odporność na zmiany?

Do zwiększenia odporności na zmiany, konieczna jest pełna kontrola nad codziennymi procesami zapewn… / Czytaj więcej

Dlaczego systemy kontrolingowe są potrzebne współczesnym firmom?

Narzędzia Corporate Performance Management (CPM) pozwalają na przyśpieszenie tempa podejmowania dec… / Czytaj więcej

Hurtownie danych – funkcje i znaczenie dla BI

Przepisów na sukces biznesu jest na rynku wiele. Nie ulega jednak wątpliwości, że jednym z kluczowy… / Czytaj więcej

Po co dane w handlu? Okazuje się, że ich analityka może dać nawet 30 proc. większe zyski!

Jak wynika z badania firmy doradczej Capgemni, producenci FMCG oraz firmy związane z handlem detali… / Czytaj więcej