Jaką przyszłość kształtują nam sztuczna inteligencja i uczenie maszynowe?
Katgoria: WIADOMOŚCI / Utworzono: 14 luty 2023
Technologie sztucznej inteligencji (AI) oraz uczenia maszynowego (ML) zmieniają biznes praktycznie każdego dnia – tak jak często pojawiają się nowe narzędzia i usługi rozszerzające zakres ich zastosowań. PwC szacuje, że wpływ tych technologii na globalną gospodarkę spowoduje do 2030 roku jej wzrost o około 15.7 biliona dolarów.{loadpoosition Wiadomosci_Dzial}
Warto wziąć pod uwagę wykorzystanie tych nowoczesnych rozwiązań jako elementu strategii przedsiębiorstwa. Skutecznie i mądrze wdrożone przynoszą wiele korzyści. Sam obszar AI/ML jest oczywiście bardzo rozległy, rozwija się na wielu płaszczyznach i dziś chciałbym przedstawić dwa tematy, na które, w moim odczuciu, warto zwrócić uwagę w najbliższym czasie.
Algorytmy deep learning jako wsparcie dla analityki danych
Firmy toną w danych. Wolumen archiwizowanych codziennie informacji cały czas rośnie, a tradycyjne środki analizy już nie wystarczają do przetworzenia ich tak, by stanowiły solidną podstawę do podejmowania dobrych decyzji. Z pomocą przychodzą tu algorytmy tzw. uczenia głębokiego (deep learning). Można je obrazowo opisać jako formę naśladowania sieci neuronowych, czyli działania ludzkiego mózgu. Doświadczonemu pracownikowi czasem wystarczy rzut oka na jeden wykres, żeby zauważyć jakąś nieprawidłowość. Podobnie działają sieci neuronowe, lecz do niedawna ich wymagania co do mocy obliczeniowej przesądzały o ich niskiej opłacalności w wielu zastosowaniach.
Dzięki infrastrukturze chmurowej dysponujemy obecnie wystarczającym zapleczem IT, by szybko tworzyć wydajne modele (algorytmy) neuronowe, które z powodzeniem mogą przetworzyć ogromne ilości danych liczbowych, tekstowych czy binarnych (obrazy, wideo czy pliki audio).
Ochrona zdrowia wspierana AI
Przykładem branży, która z powodzeniem wdraża tego typu rozwiązania jest ochrona zdrowia. Szpitale, kliniki czy laboratoria dysponują dużą liczbą wysoce nieujednoliconych danych, takich jak zdjęcia medyczne, wywiady pacjentów, strumienie danych z urządzeń diagnostycznych – a przy tym wymagają ich szybkiej analizy i podejmowania właściwych decyzji dla dobra pacjenta. Wszystko to sprawia, że w 2021 roku już 90% szpitali w USA określiło strategię wdrożenia rozwiązań AI wspomagających codzienną pracę. Jeszcze w 2019 roku 47% tych placówek nie miało żadnej strategii z tym związanej.
Oprócz oczywistych korzyści, przyczyny takiego stanu rzeczy należy upatrywać również w demokratyzacji rozwiązań AI, co przejawia się np. w dostępności gotowych algorytmów, które pozwalają wdrażać tego typu rozwiązania jeszcze szybciej. Warto w tym miejscu wspomnieć, że firma Microsoft oferuje zestaw narzędzi i usług chmurowych, jak i rozbudowaną bazę wiedzy dedykowane dla rozwiązań wdrażanych w ochronie zdrowia.
TinyML: uczenie maszynowe w pigułce
Istnieje popularne przekonanie, że korzystanie z rozwiązań AI/ML jest drogie i wymaga silnego zaplecza obliczeniowego w chmurze. Ponadto w ostatnich latach ogromny wzrost ilości danych spowodował, że wymagania algorytmów ML dotyczące wydajności infrastruktury IT były zbyt wielkie, by można było ich używać na urządzeniach lokalnych (tzw. brzegowych).
Jednak bardzo duża część danych, które przechwytujemy pochodzi z niewielkich urządzeń IoT (internet of things), które, choć obecne już niemal wszędzie, same w sobie nie posiadają dużej mocy obliczeniowej.
Gdyby jednak można było część tych danych analizować od razu w urządzeniu i zamiast danych źródłowych wysyłać tylko wynik, to zmniejszyłoby to konieczność przechowywania dużej części tych danych i, co za tym idzie, znacznie ograniczyło zapotrzebowanie na moc obliczeniową w chmurze.
Taka idea przyświeca koncepcji tinyML: zintegrować ML z IoT, by analizować dane możliwie najbliżej miejsca ich powstania. By to zrealizować, tworzone są specjalne algorytmy ML o niskich wymogach mocy obliczeniowej i pamięci RAM, generujące jednak wyniki o wystarczająco wysokiej dokładności. Tego typu czujniki, będące w istocie mikrokomputerami, mogą służyć do wzbudzania alertu w przypadku stwierdzenia nieprawidłowości w odczytach z maszyny produkcyjnej bądź (gdy wyposażone w kamerę) zasygnalizować wadę we właśnie wyprodukowanym produkcie.
Kluczową kwestią są tu oczywiście koszty – bowiem cena urządzenia IoT, które potrafi przetwarzać dane może wynosić jedynie kilkanaście, czy czasem wręcz kilka złotych. Porównując to z kosztami przetwarzania ogromnych mas danych w chmurze, nie będzie zaskoczeniem, że według szacunków wartość rynku urządzeń brzegowych (tzw. edge computing) osiągnie, w zależności od prognozy, 40-60 miliardów dolarów jeszcze przed 2030 rokiem.
Generatywne AI – ChatGPT sensacją internetu
Trudno nie wspomnieć tu przy okazji o najnowszej usłudze AI, wzbudzającej powszechne zainteresowanie – ChatGPT - uruchomionej w listopadzie 2022. Eksploruje ona obszar sztucznej inteligencji nazywany NLP, czyli przetwarzanie języka naturalnego, obecnej od lat m.in. w wirtualnych asystentach. Tutaj mamy jednak możliwość zadawania złożonych pytań, które wykraczają poza jedną, określoną domenę tematyczną, jak to jest w przypadku “zwykłych” chatbotów.
Popularność ChatGPT wynika m.in. z możliwości przetestowania go za darmo na stronie narzędzia (5). Jednak ta usługa dostarczana przez firmę OpenAI docelowo ma być płatna. Wyzwaniem najbliższych miesięcy będzie więc jej komercjalizacja i znalezienie właściwych zastosowań biznesowych, jednak już w tej chwili jawi się jako świetna alternatywa dla wiodącej wyszukiwarki internetowej, która już dawno z dostawcy treści zmieniła się w platformę reklamową.
Sztuczna inteligencja motorem napędowym rozwoju
Żyjemy w czasach przełomowych osiągnięć technologicznych, wśród których AI wiedzie prym. Organizacje na całym świecie z obszaru ochrony zdrowia, przemysłu, handlu itd. wprowadzają już przełomowe innowacje w zakresie sztucznej inteligencji i uczenia maszynowego do swoich codziennych procesów. AI nie tylko kształtuje przyszłość niemal każdej branży, ale pełni również funkcję czynnika napędzającego rozwój takich technologii jak big data czy IoT. Biorąc pod uwagę tempo wzrostu sztucznej inteligencji i uczenia maszynowego, nie można lekceważyć ich wpływu, ale należy przyjrzeć się temu, jak te technologie mogą wesprzeć naszą działalność.
Autor: Krzysztof Nogieć, Architekt Azure, Anegis Sp. z o.
Źródło: www.anegis.com
Algorytmy deep learning jako wsparcie dla analityki danych
Firmy toną w danych. Wolumen archiwizowanych codziennie informacji cały czas rośnie, a tradycyjne środki analizy już nie wystarczają do przetworzenia ich tak, by stanowiły solidną podstawę do podejmowania dobrych decyzji. Z pomocą przychodzą tu algorytmy tzw. uczenia głębokiego (deep learning). Można je obrazowo opisać jako formę naśladowania sieci neuronowych, czyli działania ludzkiego mózgu. Doświadczonemu pracownikowi czasem wystarczy rzut oka na jeden wykres, żeby zauważyć jakąś nieprawidłowość. Podobnie działają sieci neuronowe, lecz do niedawna ich wymagania co do mocy obliczeniowej przesądzały o ich niskiej opłacalności w wielu zastosowaniach.
Dzięki infrastrukturze chmurowej dysponujemy obecnie wystarczającym zapleczem IT, by szybko tworzyć wydajne modele (algorytmy) neuronowe, które z powodzeniem mogą przetworzyć ogromne ilości danych liczbowych, tekstowych czy binarnych (obrazy, wideo czy pliki audio).
Ochrona zdrowia wspierana AI
Przykładem branży, która z powodzeniem wdraża tego typu rozwiązania jest ochrona zdrowia. Szpitale, kliniki czy laboratoria dysponują dużą liczbą wysoce nieujednoliconych danych, takich jak zdjęcia medyczne, wywiady pacjentów, strumienie danych z urządzeń diagnostycznych – a przy tym wymagają ich szybkiej analizy i podejmowania właściwych decyzji dla dobra pacjenta. Wszystko to sprawia, że w 2021 roku już 90% szpitali w USA określiło strategię wdrożenia rozwiązań AI wspomagających codzienną pracę. Jeszcze w 2019 roku 47% tych placówek nie miało żadnej strategii z tym związanej.
Oprócz oczywistych korzyści, przyczyny takiego stanu rzeczy należy upatrywać również w demokratyzacji rozwiązań AI, co przejawia się np. w dostępności gotowych algorytmów, które pozwalają wdrażać tego typu rozwiązania jeszcze szybciej. Warto w tym miejscu wspomnieć, że firma Microsoft oferuje zestaw narzędzi i usług chmurowych, jak i rozbudowaną bazę wiedzy dedykowane dla rozwiązań wdrażanych w ochronie zdrowia.
TinyML: uczenie maszynowe w pigułce
Istnieje popularne przekonanie, że korzystanie z rozwiązań AI/ML jest drogie i wymaga silnego zaplecza obliczeniowego w chmurze. Ponadto w ostatnich latach ogromny wzrost ilości danych spowodował, że wymagania algorytmów ML dotyczące wydajności infrastruktury IT były zbyt wielkie, by można było ich używać na urządzeniach lokalnych (tzw. brzegowych).
Jednak bardzo duża część danych, które przechwytujemy pochodzi z niewielkich urządzeń IoT (internet of things), które, choć obecne już niemal wszędzie, same w sobie nie posiadają dużej mocy obliczeniowej.
Gdyby jednak można było część tych danych analizować od razu w urządzeniu i zamiast danych źródłowych wysyłać tylko wynik, to zmniejszyłoby to konieczność przechowywania dużej części tych danych i, co za tym idzie, znacznie ograniczyło zapotrzebowanie na moc obliczeniową w chmurze.
Taka idea przyświeca koncepcji tinyML: zintegrować ML z IoT, by analizować dane możliwie najbliżej miejsca ich powstania. By to zrealizować, tworzone są specjalne algorytmy ML o niskich wymogach mocy obliczeniowej i pamięci RAM, generujące jednak wyniki o wystarczająco wysokiej dokładności. Tego typu czujniki, będące w istocie mikrokomputerami, mogą służyć do wzbudzania alertu w przypadku stwierdzenia nieprawidłowości w odczytach z maszyny produkcyjnej bądź (gdy wyposażone w kamerę) zasygnalizować wadę we właśnie wyprodukowanym produkcie.
Kluczową kwestią są tu oczywiście koszty – bowiem cena urządzenia IoT, które potrafi przetwarzać dane może wynosić jedynie kilkanaście, czy czasem wręcz kilka złotych. Porównując to z kosztami przetwarzania ogromnych mas danych w chmurze, nie będzie zaskoczeniem, że według szacunków wartość rynku urządzeń brzegowych (tzw. edge computing) osiągnie, w zależności od prognozy, 40-60 miliardów dolarów jeszcze przed 2030 rokiem.
Generatywne AI – ChatGPT sensacją internetu
Trudno nie wspomnieć tu przy okazji o najnowszej usłudze AI, wzbudzającej powszechne zainteresowanie – ChatGPT - uruchomionej w listopadzie 2022. Eksploruje ona obszar sztucznej inteligencji nazywany NLP, czyli przetwarzanie języka naturalnego, obecnej od lat m.in. w wirtualnych asystentach. Tutaj mamy jednak możliwość zadawania złożonych pytań, które wykraczają poza jedną, określoną domenę tematyczną, jak to jest w przypadku “zwykłych” chatbotów.
Popularność ChatGPT wynika m.in. z możliwości przetestowania go za darmo na stronie narzędzia (5). Jednak ta usługa dostarczana przez firmę OpenAI docelowo ma być płatna. Wyzwaniem najbliższych miesięcy będzie więc jej komercjalizacja i znalezienie właściwych zastosowań biznesowych, jednak już w tej chwili jawi się jako świetna alternatywa dla wiodącej wyszukiwarki internetowej, która już dawno z dostawcy treści zmieniła się w platformę reklamową.
Sztuczna inteligencja motorem napędowym rozwoju
Żyjemy w czasach przełomowych osiągnięć technologicznych, wśród których AI wiedzie prym. Organizacje na całym świecie z obszaru ochrony zdrowia, przemysłu, handlu itd. wprowadzają już przełomowe innowacje w zakresie sztucznej inteligencji i uczenia maszynowego do swoich codziennych procesów. AI nie tylko kształtuje przyszłość niemal każdej branży, ale pełni również funkcję czynnika napędzającego rozwój takich technologii jak big data czy IoT. Biorąc pod uwagę tempo wzrostu sztucznej inteligencji i uczenia maszynowego, nie można lekceważyć ich wpływu, ale należy przyjrzeć się temu, jak te technologie mogą wesprzeć naszą działalność.
Autor: Krzysztof Nogieć, Architekt Azure, Anegis Sp. z o.
Źródło: www.anegis.com
Najnowsze wiadomości
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Najnowsze artykuły
5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata- a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".
Oferty Pracy
-
Młodszy konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant Microsoft Dynamics 365
-
Konsultant Wdrożeniowy Symfonia – księgowość
-
Microsoft Fabric Engineer (MFE)
-
Data/Business Analyst (PBI/Fabric)
-
CRM consultant
-
Starszy architekt systemów rozproszonych
-
Inżynier Zastosowań AI
Przeczytaj Również
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku o wartości sztucznej inteligencji decyduje nie jej „nowość”, ale zdolność do dostarczan… / Czytaj więcej
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Ponad 60% średnich przedsiębiorstw przemysłowych w Europie uważa, że tempo ich transformacji cyfrow… / Czytaj więcej
Nowa era komunikacji biznesowej, KSeF stał się faktem
Od 1 lutego 2026 roku, w Polsce z sukcesem rozpoczęła się nowa era elektronicznej komunikacji w biz… / Czytaj więcej
Co dziś decyduje o sukcesie projektów IT?
Według danych z analizy rynku IT w 2025 roku, 59% projektów jest ukończonych w ramach budżetu, 47%… / Czytaj więcej
Przemysł w 2026 roku: od eksperymentów do zdyscyplinowanego wdrażania AI
Rok 2026 będzie momentem przejścia firm produkcyjnych od pilotaży technologicznych do konsekwentnyc… / Czytaj więcej
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś… / Czytaj więcej
