Projekt AI: Jak biznes i Data Scientists mogą się dogadać?
Katgoria: IT Solutions / Utworzono: 02 lipiec 2024
AI, GenAI i Machine Learning to terminy elektryzujące świat biznesu od mniej więcej dwóch lat. Prawie wszystkie firmy, które chcą budować nowoczesny wizerunek, zapowiadają rozwój właśnie w tym kierunku. Jednak biznesowa perspektywa często mija się z techniczną, a przedstawiciele tych dwóch światów miewają trudności w ustaleniu wspólnego celu i optymalnej ścieżki dotarcia do niego.
Tworzenie projektów opartych na AI jest wyzwaniem. Tworzenie projektów AI, które dokładnie odpowiadają wizji klienta, jest jeszcze większym wyzwaniem. W obliczu obecnej popularności AI, wiele osób jest przekonanych, że potrafi samodzielnie znaleźć przestrzeń do zastosowania AI w swojej organizacji. Często jednak bardziej efektywne mogą okazać się inne technologie, o których zapominamy, entuzjastycznie podążając za trendem. W takich sytuacjach wsparcie osób posiadających wiedzę techniczną jest kluczowe. Jednak, aby obydwie strony były dla siebie pomocne, konieczna jest empatyczna komunikacja.
Generatywna sztuczna inteligencja jest wspaniałym narzędziem, które potrafi rozwiązać wiele problemów, z którymi nie radziły sobie dotychczasowe technologie. Jednak nie w każdym projekcie jest potrzebna. Przy części zadań znacznie lepiej sprawdzą się inne technologie, a moda na AI czasami sprawia, że chętnie sięgamy po niepotrzebnie skomplikowane rozwiązania. Do takich decyzji miewają tendencje zarówno przedstawiciele biznesu, jak i IT.
Z drugiej strony, zespoły Data Science nie zawsze pamiętają o potrzebach końcowych użytkowników. Pomysły na rozwiązania, które wydają się niezwykle praktyczne, a wręcz rewolucyjne podczas burz mózgów, mogą okazać się zbędne lub nawet bezsensowne w prawdziwym życiu. Na etapie weryfikacji pomysłów kluczowe jest zaangażowanie osób, które patrzą na projekt z biznesowej perspektywy.
Czy AI wreszcie zacznie prać, zamiast pisać?
Odpowiedzialność za rozwój GenAI leży zarówno po stronie osób technicznych, jak i biznesu. To od nas wszystkich zależy, które czynności przejmie od nas sztuczna inteligencja, a które pozostaną ludzką domeną. Obecnie jesteśmy na etapie, w którym zachwycają nas możliwości AI, często nie biorąc pod rozwagę realnej wartości jej kreacji. Musimy zastanawiać się i wybierać, w jakim kierunku chcemy prowadzić rozwój technologii.
Aby to było możliwe, konieczna jest empatia, której nie są w stanie opanować modele językowe. Oczywiście, po odpowiednim spromptowaniu, AI jest w stanie ją złudnie odwzorować, jednak nie może zrozumieć tego, co nie zostało wypowiedziane lub zauważone przez człowieka. Dlatego właśnie kontrolę nad tym, co tworzy AI i na jakich polach chcemy z niej korzystać, zawsze musi sprawować człowiek. W końcu to ludzie chcą zmieniać swoją rzeczywistość tak, aby była dla nas wygodniejsza. Nie zależy nam na tym, aby oddać sztucznej inteligencji zadania, które lubimy wykonywać, pozostając nas z przysłowiowym zmywaniem.
Realne wyzwania Data Scientists
Podczas spotkania Projekt: AI zorganizowanego z okazji 10-lecia SoftServe w Polsce, eksperci z zakresu Data Science i AI mieli okazji omówić realne wyzwania, które spotykają ich w pracy przy tworzeniu projektów dla biznesu opartych na sztucznej inteligencji. W warsztacie dr. Inez Okulskiej wzięło udział 10 specjalistów pracujących na co dzień w SoftServe i 10 zewnętrznych ekspertów. Wspólnie omówili założenia skutecznej pracy projektowej, które we wrześniu tego roku ukażą się w formie white paper współtworzonego przez dr Inez Okulską, SoftServe, Dell oraz Akademię Leona Koźmińskiego.
Źródło: SoftServe
Po stronie klienta bardzo często stoją zespoły osób o różnych pomysłach i potrzebach. Dla deweloperów to może stanowić wyzwanie, kiedy trudno jest dowiedzieć się, jakie są realne potrzeby biznesowe i główne priorytety – mówi Yaroslav Svyryda, AI Consultant w SoftServe Poland.
Generatywna sztuczna inteligencja jest wspaniałym narzędziem, które potrafi rozwiązać wiele problemów, z którymi nie radziły sobie dotychczasowe technologie. Jednak nie w każdym projekcie jest potrzebna. Przy części zadań znacznie lepiej sprawdzą się inne technologie, a moda na AI czasami sprawia, że chętnie sięgamy po niepotrzebnie skomplikowane rozwiązania. Do takich decyzji miewają tendencje zarówno przedstawiciele biznesu, jak i IT.
Z drugiej strony, zespoły Data Science nie zawsze pamiętają o potrzebach końcowych użytkowników. Pomysły na rozwiązania, które wydają się niezwykle praktyczne, a wręcz rewolucyjne podczas burz mózgów, mogą okazać się zbędne lub nawet bezsensowne w prawdziwym życiu. Na etapie weryfikacji pomysłów kluczowe jest zaangażowanie osób, które patrzą na projekt z biznesowej perspektywy.
Dlatego właśnie jednym z najlepszych podejść do pracy nad nowymi produktami, również tymi opartymi na AI, jest Design Thinking. Bez empatycznego zrozumienia, rozmów i wywiadów, oraz świadomych decyzji na etapie prototypowania, trudno jest tworzyć rozwiązania, które faktycznie są przydatne i spełniają swoje wyznaczone przez biznes zadania – mówi dr Inez Okulska, Head of hAI Magazine w CampusAI i NLP Senior na Politechnice Wrocławskiej.
Czy AI wreszcie zacznie prać, zamiast pisać?
Odpowiedzialność za rozwój GenAI leży zarówno po stronie osób technicznych, jak i biznesu. To od nas wszystkich zależy, które czynności przejmie od nas sztuczna inteligencja, a które pozostaną ludzką domeną. Obecnie jesteśmy na etapie, w którym zachwycają nas możliwości AI, często nie biorąc pod rozwagę realnej wartości jej kreacji. Musimy zastanawiać się i wybierać, w jakim kierunku chcemy prowadzić rozwój technologii.
Aby to było możliwe, konieczna jest empatia, której nie są w stanie opanować modele językowe. Oczywiście, po odpowiednim spromptowaniu, AI jest w stanie ją złudnie odwzorować, jednak nie może zrozumieć tego, co nie zostało wypowiedziane lub zauważone przez człowieka. Dlatego właśnie kontrolę nad tym, co tworzy AI i na jakich polach chcemy z niej korzystać, zawsze musi sprawować człowiek. W końcu to ludzie chcą zmieniać swoją rzeczywistość tak, aby była dla nas wygodniejsza. Nie zależy nam na tym, aby oddać sztucznej inteligencji zadania, które lubimy wykonywać, pozostając nas z przysłowiowym zmywaniem.
Realne wyzwania Data Scientists
Podczas spotkania Projekt: AI zorganizowanego z okazji 10-lecia SoftServe w Polsce, eksperci z zakresu Data Science i AI mieli okazji omówić realne wyzwania, które spotykają ich w pracy przy tworzeniu projektów dla biznesu opartych na sztucznej inteligencji. W warsztacie dr. Inez Okulskiej wzięło udział 10 specjalistów pracujących na co dzień w SoftServe i 10 zewnętrznych ekspertów. Wspólnie omówili założenia skutecznej pracy projektowej, które we wrześniu tego roku ukażą się w formie white paper współtworzonego przez dr Inez Okulską, SoftServe, Dell oraz Akademię Leona Koźmińskiego.
SoftServe to firma zorientowana na rozwój zarówno technologii, jak i ludzi. Bardzo silny nacisk kładziemy na tworzenie nowatorskich rozwiązań w naszych zespołach projektowych pracujących z klientami, jak i w działach R&D. Zależy nam na tym, aby wspierać rozwój środowiska Data Science łącząc najbardziej kreatywnych ekspertów i ekspertki – mówi Paula Rejmer, Country People Lead w SoftServe Poland.
Źródło: SoftServe
Najnowsze wiadomości
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Najnowsze artykuły
5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata — a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".
Oferty Pracy
-
Młodszy konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant Microsoft Dynamics 365
-
Konsultant Wdrożeniowy Symfonia – księgowość
-
Microsoft Fabric Engineer (MFE)
-
Data/Business Analyst (PBI/Fabric)
-
CRM consultant
-
Starszy architekt systemów rozproszonych
-
Inżynier Zastosowań AI
Przeczytaj Również
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znaczni… / Czytaj więcej
Vertiv Frontiers: 5 trendów, które przeprojektują centra danych pod „fabryki AI”
Centra danych wchodzą w erę „fabryk AI”, gdzie o przewadze nie decyduje już sama skala, lecz zdolno… / Czytaj więcej
Cyberbezpieczeństwo 2026. 6 trendów, które wymuszą nowe podejście do AI, danych i tożsamości
Rok 2026 zapowiada się jako moment przełomu w świecie cyfrowego bezpieczeństwa. W obliczu dynamiczn… / Czytaj więcej
Jurysdykcja danych w chmurze: dlaczego polskie firmy coraz częściej wybierają „gdzie leżą” ich system
Jurysdykcja danych przestała być detalem w umowach chmurowych – dziś decyduje o zgodności, bezpiecz… / Czytaj więcej
Tylko 7% firm w Europie wykorzystuje w pełni potencjał AI
72% firm w regionie EMEA uznaje rozwój narzędzi bazujących na sztucznej inteligencji za priorytet s… / Czytaj więcej
Chmura publiczna w Unii Europejskiej – między innowacją a odpowiedzialnością za dane
Transformacja cyfrowa w Europie coraz mocniej opiera się na chmurze publicznej, która stała się fun… / Czytaj więcej

