Sztuczna inteligencja w systemach wizyjnych – czy jesteśmy na to gotowi?
Katgoria: IT Solutions / Utworzono: 09 sierpień 2022
Systemy wizyjne są stosowane do kontroli jakości procesów. Wykorzystują uczenie maszynowe do prowadzenia automatycznych analiz wizyjnych otoczenia. Rozwiązania oparte na sztucznej inteligencji pozwalają im wychwytywać nieprawidłowości. Systemy wizyjne pracują w szerokim i zmiennym zakresie informacji, dlatego do ich wdrożenia w zakładzie przemysłowym niezbędne jest przygotowanie odpowiedniego środowiska.
Systemy wizyjne są wyposażone w specjalne urządzenia oraz oprogramowanie umożliwiające prowadzenie inspekcji lub pomiarów szerokiej gamy różnorodnych elementów. Kontrola odbywa się w sposób precyzyjny, płynny, szybki i powtarzalny. Systemy są zdolne do rozróżniania wielu wzorców jednocześnie, a przy tym mają nieograniczoną możliwość zapamiętywania wielu norm i wersji.
Obecnie systemy wizyjne znajdują zastosowanie przede wszystkim w branży motoryzacyjnej na liniach montażowych do kontroli poprawności procesów. Wykorzystuje się je do sprawdzania obecności i pozycji komponentów, czytania kodów oraz kontroli jakości elementów. Wady jakościowe mogą powstawać zarówno na etapie produkcji, jak i samego montażu. Są to różnego rodzaju rysy, wgniecenia, przetarcia – niedoskonałości mogą przyjmować różne formy i wielkości, więc zakres tych informacji jest szeroki i zmienny. W takich przypadkach zbawienne okazuje się uczenie maszynowe.
System wizyjny może zostać zintegrowany z linią produkcyjną, układami automatyki i robotyki oraz systemami MES, umożliwiając tym samym zarządzanie jakością lub towarem niezgodnym. Co istotne, kontrola jakości może być przeprowadzana na poziomie nieosiągalnym dla możliwości jednego człowieka – zarówno pod względem ilości danych koniecznych do zapamiętania, jak i precyzji prowadzenia obserwacji, na którą w przypadku ludzi ogromny wpływ ma zmęczenie. System nie tylko dostrzega wszelkie niedoskonałości, ale też potrafi dokładnie obliczyć ich rozmiar. Rejestruje obrazy wraz z niezbędnymi danymi, ułatwiając tym samym skuteczność realizacji późniejszych audytów jakości. Przede wszystkim jednak uczenie maszynowe pozwala systemom wizyjnym stale zwiększać dokładność obserwacji. Tak wysoka jakość kontroli przekłada się natomiast na mniejszą liczbę reklamacji, a co za tym idzie, ograniczenie zbędnych kosztów.
Szerokie możliwości systemów wizyjnych sprawiają, że wydają się one być najlepszym rozwiązaniem problemów jakościowych w branży przemysłowej. Jak się jednak okazuje, nie jest to opcja możliwa do natychmiastowego wdrożenia w wielu zakładach.
Obecnie wiele firm jest na etapie wdrażania lub poszerzania zakresu wdrożenia automatyzacji i robotyzacji procesów. Cyfryzacja i automatyzacja zrewolucjonizowały przemysł w latach 70. ubiegłego wieku. Systemy wizyjne natomiast korzystają z zaawansowanych technologii AI charakterystycznych dla Przemysłu 4.0. Samodzielna wymiana informacji i dopasowanie do warunków na podstawie otrzymanych danych wymaga stworzenia odpowiedniego środowiska. Tylko wtedy możliwe będzie całkowite wykorzystanie potencjału uczenia maszynowego w systemach wizyjnych.
Źródło: Etisoft
Stosowanie systemów wizyjnych a jakość kontroli
Obecnie systemy wizyjne znajdują zastosowanie przede wszystkim w branży motoryzacyjnej na liniach montażowych do kontroli poprawności procesów. Wykorzystuje się je do sprawdzania obecności i pozycji komponentów, czytania kodów oraz kontroli jakości elementów. Wady jakościowe mogą powstawać zarówno na etapie produkcji, jak i samego montażu. Są to różnego rodzaju rysy, wgniecenia, przetarcia – niedoskonałości mogą przyjmować różne formy i wielkości, więc zakres tych informacji jest szeroki i zmienny. W takich przypadkach zbawienne okazuje się uczenie maszynowe.
Aby umożliwić analizę produktów z dużą ilością zmiennych, tworzy się modele w postaci zbiorów zdjęć zawierających różnorakie ułożenia i warianty przedmiotu inspekcji. Wykorzystuje się w tym celu zdjęcia poprawne, niepoprawne, przedstawiające produkt w różnych pozycjach, wariantach, ułożeniach, zbiory z przedmiotami niekompletnymi, w różnym oświetleniu, obrócone i zniekształcone. Zbiory liczą przeważnie od kilkuset do kilku tysięcy zdjęć. W ten sposób algorytm otrzymuje informacje o przedmiocie inspekcji. Im szerszy zakres danych zbierze, tym dokładniejsza będzie kontrola jakości w czasie inspekcji – tłumaczy Adrianna Orzoł, zajmująca się tworzeniem algorytmów wizyjnych w Etisoft Smart Solutions.
System wizyjny może zostać zintegrowany z linią produkcyjną, układami automatyki i robotyki oraz systemami MES, umożliwiając tym samym zarządzanie jakością lub towarem niezgodnym. Co istotne, kontrola jakości może być przeprowadzana na poziomie nieosiągalnym dla możliwości jednego człowieka – zarówno pod względem ilości danych koniecznych do zapamiętania, jak i precyzji prowadzenia obserwacji, na którą w przypadku ludzi ogromny wpływ ma zmęczenie. System nie tylko dostrzega wszelkie niedoskonałości, ale też potrafi dokładnie obliczyć ich rozmiar. Rejestruje obrazy wraz z niezbędnymi danymi, ułatwiając tym samym skuteczność realizacji późniejszych audytów jakości. Przede wszystkim jednak uczenie maszynowe pozwala systemom wizyjnym stale zwiększać dokładność obserwacji. Tak wysoka jakość kontroli przekłada się natomiast na mniejszą liczbę reklamacji, a co za tym idzie, ograniczenie zbędnych kosztów.
Czy każde przedsiębiorstwo jest gotowe na wdrożenie systemów wizyjnych?
Szerokie możliwości systemów wizyjnych sprawiają, że wydają się one być najlepszym rozwiązaniem problemów jakościowych w branży przemysłowej. Jak się jednak okazuje, nie jest to opcja możliwa do natychmiastowego wdrożenia w wielu zakładach.
O skuteczności wdrożonego systemu wizyjnego decydują przede wszystkim możliwości technologiczne danego przedsiębiorstwa. Automatyzacja i robotyzacja to nie wszystko. Zakłady przemysłowe muszą zadbać o odpowiednie środowisko, które pozwoli wykorzystać możliwości sztucznej inteligencji. Uczenie maszynowe wymaga przestrzeni na zbiór danych niezbędnych do nauki algorytmu oraz czasu koniecznego do ich przetworzenia. Znaczna część firm nie dysponuje zapleczem technicznym oraz możliwościami pozwalającymi na błyskawiczne wdrożenie systemów wizyjnych – mówi Adrianna Orzoł.
Obecnie wiele firm jest na etapie wdrażania lub poszerzania zakresu wdrożenia automatyzacji i robotyzacji procesów. Cyfryzacja i automatyzacja zrewolucjonizowały przemysł w latach 70. ubiegłego wieku. Systemy wizyjne natomiast korzystają z zaawansowanych technologii AI charakterystycznych dla Przemysłu 4.0. Samodzielna wymiana informacji i dopasowanie do warunków na podstawie otrzymanych danych wymaga stworzenia odpowiedniego środowiska. Tylko wtedy możliwe będzie całkowite wykorzystanie potencjału uczenia maszynowego w systemach wizyjnych.
Źródło: Etisoft
Najnowsze wiadomości
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Najnowsze artykuły
5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata — a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".
Oferty Pracy
-
Młodszy konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant Microsoft Dynamics 365
-
Konsultant Wdrożeniowy Symfonia – księgowość
-
Microsoft Fabric Engineer (MFE)
-
Data/Business Analyst (PBI/Fabric)
-
CRM consultant
-
Starszy architekt systemów rozproszonych
-
Inżynier Zastosowań AI
Przeczytaj Również
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znaczni… / Czytaj więcej
Vertiv Frontiers: 5 trendów, które przeprojektują centra danych pod „fabryki AI”
Centra danych wchodzą w erę „fabryk AI”, gdzie o przewadze nie decyduje już sama skala, lecz zdolno… / Czytaj więcej
Cyberbezpieczeństwo 2026. 6 trendów, które wymuszą nowe podejście do AI, danych i tożsamości
Rok 2026 zapowiada się jako moment przełomu w świecie cyfrowego bezpieczeństwa. W obliczu dynamiczn… / Czytaj więcej
Jurysdykcja danych w chmurze: dlaczego polskie firmy coraz częściej wybierają „gdzie leżą” ich system
Jurysdykcja danych przestała być detalem w umowach chmurowych – dziś decyduje o zgodności, bezpiecz… / Czytaj więcej
Tylko 7% firm w Europie wykorzystuje w pełni potencjał AI
72% firm w regionie EMEA uznaje rozwój narzędzi bazujących na sztucznej inteligencji za priorytet s… / Czytaj więcej
Chmura publiczna w Unii Europejskiej – między innowacją a odpowiedzialnością za dane
Transformacja cyfrowa w Europie coraz mocniej opiera się na chmurze publicznej, która stała się fun… / Czytaj więcej

