Przejdź do głównej treści

Sztuczna inteligencja znów wchodzi na salony. Sprosta oczekiwaniom?

Katgoria: IT Solutions / Utworzono: 27 listopad 2017

Sztuczna inteligencja znów wchodzi na salony. Sprosta oczekiwaniom?

Lata 80. to nie tylko muzyka disco, trwała ondulacja, niezliczone prywatki i zakupy w Pewexie. Ten barwny okres we współczesnej historii to również wielki boom na sztuczną inteligencję, podsycany takimi hitami jak „Gwiezdne Wojny” czy „Łowca Androidów”. Niestety, ówczesna technologia nie sprostała wyzwaniu zawodząc rozbuchane oczekiwania entuzjastów.

REKLAMA
ERP-VIEW.PL- STREAMSOFT
 
Dziś sprawy mają się zupełnie inaczej. Programiści dysponują sprzętem o nieporównywalnie większej mocy obliczeniowej, a szybki internet i dostęp do gigantycznych zbiorów danych dają twórcom inteligentnych algorytmów masę nowych możliwości. Sztuczna inteligencja wróciła na salony i znów rozpala wyobraźnię, jednak nim zobaczymy ją w triumfalnym pochodzie, programiści muszą uporać się z kilkoma ważnymi problemami.
Tak jak elektryczność 100 lat temu zmieniła prawie wszystko, tak dziś z trudnością przychodzi mi znalezienie branży, której sztuczna inteligencja nie zmieni w nadchodzących latach – powiedział Andrew Ng, współtwórca platformy edukacyjnej Courser.
Pod słowami wykładającego na uniwersytecie Stanford biznesmena podpisze się chyba każdy wizjoner, upatrujący w SI źródło rozwiązań niezliczonych problemów, z jakimi boryka się dziś nasza cywilizacja. Emocje studzą wypowiedzi sceptyków, którzy w rozwój inteligentnych maszyn dostrzegają zarówno błogosławieństwa, jak i zagrożenia, potrafiące przyprawić o dreszcze nawet prawdziwych weteranów futurystycznej literatury grozy. W gronie sceptyków znaleźli się m.in. Stephen Hawking i Elon Musk. Ten pierwszy od lat przestrzega przed konsekwencjami cyber ewolucji, snując czarne scenariusze, w których przetrwanie uciemiężonej ludzkości staje pod znakiem zapytania.
Rozwój pełnej, sztucznej inteligencji może doprowadzić do wyginięcia rodzaju ludzkiego — straszył w wywiadzie dla BBC wybitny fizyk teorytyczny.
By nie dopuścić do anihilacji gatunku homo sapiens z rąk wrogo nastawionych maszyn, na Uniwersytecie Cambridge otworzono „Leverhulme Centre for the Future of Intelligence” - instytucję poświęconą analizie rozwoju sztucznej inteligencji. Podczas wieczoru inauguracyjnego, w krótkim przemówieniu Hawking po raz kolejny wyraził swoje zaniepokojenie. — Uważam, że nie ma najmniejszej różnicy pomiędzy tym, co można osiągnąć przez biologiczny mózg, a tym, co można osiągnąć za pomocą komputera. Komputery teoretycznie mogą naśladować ludzką inteligencję, a nawet ją przewyższyć — powiedział fizyk i dodał, że SI z jednej strony może doprowadzić do wyeliminowania chorób, ubóstwa i zmian klimatycznych, z drugiej zaś może przyczynić się do powstania niechcianych przez nas zjawisk lub rzeczy, takich jak autonomiczna broń, zakłócenia gospodarcze i maszyny, które po rozwinięciu własnej woli mogłyby wejść w konflikt z ludźmi.

Geneza inteligentnych maszyn

Gdy w drugiej połowie minionego stulecia rozpoczęto pracę nad rozwojem myślących maszyn, wyłoniły się dwie szkoły. Pierwsza postawiła na programowanie w sposób logiczny, tak by wewnętrzne procesy zachodzące w sztucznej inteligencji były transparentne i by w każdej chwili można było zajrzeć do jej kodu i dowiedzieć się czemu podjęła ona taką, a nie inną decyzję. Odmienne podejście mieli przedstawiciele drugiej szkoły, którzy wzorując się na żywych organizmach uznali, że lepiej będzie, jeśli sztuczna inteligencja uczyć się będzie sama. Obserwacja, zdobywanie doświadczeń i wyciąganie wniosków przez SI miało znacząco przyspieszyć jej rozwój i tak się stało. Uczenie maszynowe okazało się strzałem w dziesiątkę, a jego bardziej zaawansowana odsłona — sieci neuronowe — przyniosła prawdziwy przełom w rozwoju sztucznej inteligencji. Już w r. 1990 potrafiła ona odczytać pismo ręczne i przeformatować je na czcionkę komputerową. Dziś z głębokiego uczenia maszynowego firmy korzystają coraz częściej; banki zaprzęgają je do weryfikacji zdolności kredytowych swoich klientów, a zarządy największych korporacji dzięki zaawansowanym narzędziom do analityki danych podejmują lepsze decyzje biznesowe. Z inteligentnych algorytmów korzysta się również w reklamie internetowej, a platformy DMP (data management platform), analizujące gigantyczne wolumeny danych o preferencjach i zrachowaniach internautów, umożliwiają marketerom docieranie do grupy docelowej z wyjątkową precyzją. Bez uczenia maszynowego, okiełznanie rozległych zasobów Big Data byłoby niemożliwe do zrealizowania.

Mimo, że inteligentne algorytmy zyskują na popularności, to stopień nasycenia nimi rynku różni się w zależności od branży. Nikogo nie powinno to dziwić, bo w przypadku innych technologia sytuacja wygląda podobnie. Z uczeniem maszynowym wiąże się jednak pewien sekret, o którym nie wszyscy chcą głośno mówić, a to właśnie za jego sprawą nasze zaufanie do tej technologii pozostaje niepełne. Procesy zachodzące w sieciach neuronowych owiane są tajemnicą i nie wiadomo, co dokładnie stoi za podejmowanymi za ich pośrednictwem decyzjami. Głębokie uczenie maszynowe pozwala komputerom uczyć się na podstawie przedstawionych im przypadków i autonomicznie rozwiązywać problemy, jednak gdy w grę wchodzą złożone sieci neuronowe, a komputer bierze pod uwagę wiele wątków, to dostarczane przez niego wyniki, mimo że słuszne to nie zawierają łatwego w wytłumaczeniu uzasadnienia. Paradoksalnie, to właśnie branże, które nie mogą pozwolić sobie na beztroskie zaufanie w stosunku do maszyn i potrzebują wyjaśnień dla podejmowanych przez nie decyzji, najwięcej inwestują w rozwój SI. Według firmy analitycznej CB Insights, od roku 2012 na startupy pracujące nad sztuczną inteligencją przeznaczono łącznie 14,9 miliarda dolarów, a najwięcej inwestycji dotyczyło sektora Health and Wellness.

Człowiek żąda wyjaśnień

By wykorzystać wielkie, nieustrukturyzowane zbiory danych, po uczenie maszynowe sięgnęła Regina Barzilay, profesor MIT, u której w wieku 46 lat zdiagnozowano raka piersi. Zdumiona tym, że szpitale nie wykorzystują sztucznej inteligencji do analityki historii chorobowej pacjentów, postanowiła to zmienić. Jej nowa misja ma jeden cel: zrewolucjonizować medycynę. Profesor MIT doskonale zdawała sobie sprawę z tego, że do realizacji jej ambitnego projektu nie wystarczą gromadzone w szpitalach podstawowe akta pacjentów. By w pełni wykorzystać potencjał sztucznej inteligencji, postanowiła „nakarmić ją” m.in. danymi patologicznymi i obrazowymi. Wiedząc, jak działa uczenie maszynowe, Regina Barzilay wzbogaciła swój system o funkcję, która miała ułatwić zrozumienie generowanych wyników. Dzięki niej, komputer wyodrębnia i podkreśla fragmenty tekstu reprezentatywne dla odkrytego wzorca. Umożliwiło to lekarzom z Massachusetts General Hospital głębszą analizę wyróżnionych schematów. Takie rozwiązanie to półśrodek, który w przypadku analizy wyników badań pacjentów okazał się pomocny, jednak nie rozwiązuje on problemu z owianym tajemnicą wnioskowaniem głębokich sieci neuronowych.

Wglądu w procesy decyzyjne zachodzące w uczeniu maszynowym domaga się również Unia Europejska. Brukselscy urzędnicy najwyraźniej nie ufają sztucznej inteligencji wystarczająco, by wierzyć jej na słowo i odczuwają niepokój w związku z jej szeroką implementacją w biznesie. Już w połowie 2018 roku ma wejść w życie prawo zobowiązujące firmy posługujące się sztuczną inteligencją, by używane przez nie systemy potrafiły przedstawić wyjaśnienia dla swoich postanowień.

Czemu przywiązuje się do tego aż taką wagę? Łatwo zrozumieć to na przykładzie motoryzacji. Błąd komputera może skończyć się śmiertelnym wypadkiem. Odpowiedzialność spoczywająca na maszynie jest nieporównywalnie większa, a każda podjęta przez nią decyzja, w razie potrzeby powinna być automatycznie wyjaśniona. Amerykański koncern technologiczny Nvidia testuje już samochód, który w przeciwieństwie do innych autonomicznych pojazdów, nauczył się zasad poruszania w ruchu drogowym obserwując poczynania ludzi. Na razie nie spowodował on żadnego wypadku, ale gdyby pewnego dnia potrącił człowieka albo wjechał w płot, programiści mieliby nie lada zagwozdkę i do czasu jej wyjaśnienie najlepiej byłoby wycofać go z ruchu. Jeśli jednak pojazd przedzie wszystkie testy, to urzędnicy będą mieli niezły orzech do zgryzienia: czy takie samochody są wystarczająco bezpieczne, by jeździć po naszych ulicach?

Przed podobnym dylematem stoi dziś amerykańska armia, która przyszłość widzi w automatyzacji jednostek bojowych. Projekty opracowywane przez wojsko i agencje rządowe wykorzystują uczenie maszynowe do pilotowania pojazdów czy identyfikacji wrogich obiektów. Nie do pomyślenia jest sytuacja, w której komputer podejmuje decyzję o likwidacji jakiegoś celu i nie potrafi wyjaśnić, jakie stoją za nią przesłanki. Jeśli w takim ataku ucierpią cywile, kogo powinniśmy winić za zaistniałą tragedię? Tymczasem DARPA (Defense Advanced Research Projects Agency), amerykańska agencja rządowa stojąca m.in. za powstaniem komputerowej sieci ARPANET, która przerodziła się we wszechobecny internet, pompuje miliony dolarów w sztuczną inteligencję na usługach amerykańskiej armii. A co jeśli pewnego dnia rozwinie się ona do tego stopnia, że postanowi się uniezależnić? Takimi scenariuszami karmił nas Holywood już w latach 80., a dziś są one bardziej realne niż kiedykolwiek wcześniej, jednak wciąż na tyle odległe, że możemy spać spokojnie i nie przejmować się widmem krwawej rebelii maszyn. Sztuczna inteligencja nie wymknęła się programistom spod kontroli, nie wyodrębniła własnej świadomości, a tym bardziej nie zbuntowała się przeciwko człowiekowi. Nie jest również na tyle rozwinięta, by stanowiła jakiekolwiek zagrożenie. Nawet jeśli w przyszłości uda się stworzyć sieć neuronową, która wielkością dorówna ludzkiemu mózgowi, to nie wiadomo, czy wykształci ona świadomość, wolną wolę lub abstrakcyjne myślenie. By to sprawdzić potrzebujemy komputera 100 tys. razy szybszego niż japoński superkomputer K, któremu udało się odtworzyć zaledwie sekundę aktywność, jaką wykonuje jeden procent mózgu człowieka. Symulacja ludzkiego mózgu to pieśń przyszłości. Tymczasem stoi przed nami ogromne wyzwanie: uczynić głębokie uczenie maszynowe transparentnym, nie podcinając mu skrzydeł. Stworzenie maszyn, które potrafią wytłumaczyć najbardziej skomplikowane procesy obliczeniowe będzie krokiem milowy w rozwoju sztucznej inteligencji.

Piotr Prajsnar, Prezes Zarządu Cloud Technologies

Najnowsze wiadomości

Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.

Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
BPSCEuropejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.



Najnowsze artykuły

5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata — a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".

Przeczytaj Również

Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań

Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znaczni… / Czytaj więcej

Vertiv Frontiers: 5 trendów, które przeprojektują centra danych pod „fabryki AI”

Centra danych wchodzą w erę „fabryk AI”, gdzie o przewadze nie decyduje już sama skala, lecz zdolno… / Czytaj więcej

Cyberbezpieczeństwo 2026. 6 trendów, które wymuszą nowe podejście do AI, danych i tożsamości

Rok 2026 zapowiada się jako moment przełomu w świecie cyfrowego bezpieczeństwa. W obliczu dynamiczn… / Czytaj więcej

Jurysdykcja danych w chmurze: dlaczego polskie firmy coraz częściej wybierają „gdzie leżą” ich system

Jurysdykcja danych przestała być detalem w umowach chmurowych – dziś decyduje o zgodności, bezpiecz… / Czytaj więcej

Tylko 7% firm w Europie wykorzystuje w pełni potencjał AI

72% firm w regionie EMEA uznaje rozwój narzędzi bazujących na sztucznej inteligencji za priorytet s… / Czytaj więcej

Chmura publiczna w Unii Europejskiej – między innowacją a odpowiedzialnością za dane

Transformacja cyfrowa w Europie coraz mocniej opiera się na chmurze publicznej, która stała się fun… / Czytaj więcej