GenAI w operacjach biznesowych. Jak przygotować firmę, aby transformacja przyniosła realne korzyści?
Katgoria: WIADOMOŚCI / Utworzono: 24 wrzesień 2024
W ostatnich latach firmy zetknęły się z wieloma technologiami, które miały zrewolucjonizować ich działanie - od blockchain, przez task mining, po metaverse. GenAI również obiecuje automatyzację zadań, które do tej pory wykonywali wyłącznie ludzie. Ale czy to coś więcej niż buzzword? A jeśli tak, jak przygotować organizację na tę zmianę?
Dotychczasowe technologie nie potrafiły uchwycić ludzkiej strony biznesu – kreatywności, rozumienia złożonych danych i naturalnej komunikacji. Generatywna sztuczna inteligencja zmienia to, przekształcając całe procesy i działy w organizacjach. Zamiast automatyzować małe części procesów, pozwala na ich całkowitą przebudowę, opartą na doświadczeniach użytkowników i tworzeniu realnej wartości. Do połowy 2024 roku ten nowy sposób myślenia wzbudził duże zainteresowanie liderów transformacji, pytających: gdzie można zastosować Gen AI?
Coroczne badanie Capgemini Research Institute, w którym udział wzięło ponad 800 globalnych przedsiębiorstw, przyniosło zaskakujące wyniki. W 2024 roku najczęściej wykorzystywano Gen AI w obszarach takich jak IT (27% firm), zarządzanie ryzykiem (26%), logistyka i łańcuch dostaw (26%), sprzedaż i centra obsługi (25%), finanse i księgowość (25%) oraz zasoby ludzkie (24%). To pokazuje, że GenAI nie jest technologią zarezerwowaną dla jednej dziedziny, lecz strategicznym narzędziem wspierającym różne aspekty działalności firmy.
Warto zwrócić uwagę na różnorodne formy wdrożenia GenAI, szczególnie w kontekście transformacji opartej na ludzkich umiejętnościach. W finansach i księgowości GenAI automatyzuje rutynowe zadania, takie jak analiza danych, tworzenie raportów i rekomendacji. Dzięki połączeniu z uczeniem maszynowym i modelami biznesowymi, oferuje zaawansowane analizy predykcyjne, wspierające lepsze decyzje finansowe. Kluczową zaletą GenAI jest nie tylko generowanie, ale i zrozumienie danych, zwłaszcza nieustrukturyzowanych, oraz integracja z systemami ERP.
Przykładem zastosowania GenAI w międzynarodowej organizacji usługowej jest system, który przetwarza dziesiątki tysięcy dokumentów i zapytań dziennie. Automatycznie klasyfikuje, tłumaczy, weryfikuje dane nadawców oraz strukturyzuje informacje, realizując zapytania lub prowadząc dialog w celu uzupełnienia brakujących danych. Wcześniej te procesy były realizowane manualnie, a teraz, dzięki Gen AI, ponad 80% zapytań jest zautomatyzowanych, co znacznie upraszcza proces, architekturę technologiczną i obniża koszty operacyjne.
W HR Gen AI jest wykorzystywany do tworzenia opisów stanowisk, wsparcia nowozatrudnionych osób w pierwszych 30/60/90 dniach pracy oraz poprawy całego doświadczenia pracownika. Technologia zwiększa zaangażowanie, eliminuje rutynowe działania i umożliwia bardziej spersonalizowane podejście.
W obszarze Learning & Development (L&D) GenAI automatycznie tworzy szkice szkoleń wraz z materiałami, komentarzami i quizami w wielu językach, skracając czas przygotowania szkoleń z ponad 10 dni do kilku godzin.
W Łańcuchu Dostaw Gen AI wspiera planowanie popytu i zarządzanie zapasami, analizując dane z różnych źródeł i optymalizując je w określonym kontekście. Automatyzuje również obsługę zapytań dostawców, co przekłada się na redukcję kosztów operacyjnych i większą efektywność.
W jednym z projektów Gen AI połączono metody modelowania statystycznego z uczeniem maszynowym, tworząc hiper-spersonalizowane środowisko analityczne. System generuje propozycje strategii, identyfikuje kluczowe punkty i automatycznie dostosowuje analizy, odpowiadając na konkretne pytania użytkowników, od dyrektorów finansowych po analityków.
To tylko kilka z ponad 150 zidentyfikowanych przypadków użycia GenAI w procesach organizacji GBS, które mogą przynieść znaczące korzyści biznesowe w krótkim czasie, w zależności od gotowości organizacji do transformacji.
Jak przygotować operacje, aby GenAI odniosła sukces?
Największą różnicą między GenAI a innymi rewolucyjnymi technologiami ostatnich lat jest to, że jej efekty są namacalne i łatwe do zweryfikowania w rzeczywistych warunkach biznesowych. Aby jednak w pełni wykorzystać potencjał GenAI, konieczne są zmiany w strategii, infrastrukturze, procesach oraz skuteczne zarządzanie zmianą. Miarą sukcesu technologii nie są pojedyncze projekty, lecz skala wdrożeń. Jak wynika z badania Capgemini, 96% liderów biznesu uważa GenAI za kluczowy temat na poziomie zarządu, a 24% firm już wdrożyło zintegrowane narzędzia GenAI w skali, w porównaniu do zaledwie 6% w 2023 roku.
Co więc odróżnia firmy eksperymentujące z GenAI od tych, które wdrażają ją na szeroką skalę?
Strategia: Kluczowe jest stworzenie klarownych mechanizmów zarządzania projektami GenAI w organizacji, obejmujących precyzyjną strategię, zespół ekspercki, zasady bezpiecznego i etycznego korzystania oraz nadzór i finansowanie. Wiele pierwszych inicjatyw kończy się niepowodzeniem z powodu braku solidnych fundamentów biznesowych i technologicznych, przez co traktowane są jako demo, a nie długofalowa inwestycja strategiczna.
Koszt: Często pomijanym elementem jest brak odpowiednich podstaw biznesowych i technicznych do kontrolowania kosztów związanych z użytkowaniem rozwiązań opartych na GenAI. Źle zaprojektowane systemy, zwłaszcza oparte na dużych modelach językowych, mogą generować wysokie koszty, głównie ze względu na wymagania technologiczne i model rozliczeń, np. opłaty za token (około 3 znaki tekstu) rozliczane zarówno za tekst wysyłany, jak i otrzymany. Znane są przypadki, gdzie niekontrolowany sposób obsługi zapytań przekraczał zakładany roczny budżet w ciągu miesiąca. Istnieją jednak techniczne mechanizmy, które mogą obniżyć koszty nawet o 80%.
Zaufanie: Nawet najlepsza technologia nie przyniesie zwrotu z inwestycji, jeśli istnieje niekontrolowane ryzyko techniczne, dotyczące bezpieczeństwa danych czy regulacji (np. Europejski AI Act). Użytkownicy biznesowi nie zaufają jej. Eksperci wskazali 12 kluczowych aspektów biznesowych, technicznych i związanych ze zmianą, które każda aplikacja GenAI musi spełniać. W skrócie, każde rozwiązanie powinno: działać skutecznie, działać niezawodnie, spełniać oczekiwania użytkownika i działać w jego najlepszym interesie. Realizacja tych celów wymaga odpowiedniej kontroli technologii, dbałości o doświadczenie użytkownika i zarządzania zmianą, z czego to ostatnie często jest mylnie utożsamiane jedynie z operacjami back office.
Skala: Spośród ponad 1000 międzynarodowych organizacji zapytanych o udostępnienie narzędzi GenAI zatrudnionym osobom, aż 97% zezwala na ich użycie. Z tego 54% daje dostęp wszystkim zespołom pod warunkiem przestrzegania firmowej polityki, a 36% udostępnia je wybranym grupom, w zależności od roli i umiejętności. Skalowanie GenAI dotyczy nie tylko liczby użytkowników, ale także wspieranych interakcji, integracji i automatyzacji. Aby osiągnąć pełną skalę, konieczne jest stworzenie platformy biznesowej, która łączy infrastrukturę z reużywalnymi, skalowalnymi komponentami opartymi na ekosystemie danych, systemach i automatyzacji.
GenAI dzisiaj, a co czeka nas jutro?
Dla wielu firm generatywna sztuczna inteligencja może wydawać się technologią przyszłości lub narzędziem dla ekspertów. Tymczasem organizacje, które już teraz budują fundamenty i odnoszą pierwsze sukcesy, zyskują nie tylko skuteczne narzędzie transformacji, ale także przewagę rynkową.
Innowacje nie kończą się na dużych modelach językowych - nadchodzą technologie oparte na małych, specjalistycznych modelach multimodalnych (obsługujących tekst, głos i obraz) oraz systemy niezależnych agentów (Agentic AI), które potrafią planować, negocjować, pisać kod i się rozwijać. Wdrożenia tych technologii pokazują, że może to być prawdziwa automatyzacja, która rozumie dane, planuje działania i dostosowuje się do wymagań biznesu. Dzięki temu ludzie mogą skupić się na tym, co naprawdę ważne – wykorzystując swoją wiedzę, kreatywność i intuicję, wspierani przez inteligentne technologie.
Autor: Marek A. Sowa, Starszy Dyrektor ds. GenAI, Capgemini Polska.
Coroczne badanie Capgemini Research Institute, w którym udział wzięło ponad 800 globalnych przedsiębiorstw, przyniosło zaskakujące wyniki. W 2024 roku najczęściej wykorzystywano Gen AI w obszarach takich jak IT (27% firm), zarządzanie ryzykiem (26%), logistyka i łańcuch dostaw (26%), sprzedaż i centra obsługi (25%), finanse i księgowość (25%) oraz zasoby ludzkie (24%). To pokazuje, że GenAI nie jest technologią zarezerwowaną dla jednej dziedziny, lecz strategicznym narzędziem wspierającym różne aspekty działalności firmy.
Warto zwrócić uwagę na różnorodne formy wdrożenia GenAI, szczególnie w kontekście transformacji opartej na ludzkich umiejętnościach. W finansach i księgowości GenAI automatyzuje rutynowe zadania, takie jak analiza danych, tworzenie raportów i rekomendacji. Dzięki połączeniu z uczeniem maszynowym i modelami biznesowymi, oferuje zaawansowane analizy predykcyjne, wspierające lepsze decyzje finansowe. Kluczową zaletą GenAI jest nie tylko generowanie, ale i zrozumienie danych, zwłaszcza nieustrukturyzowanych, oraz integracja z systemami ERP.
Przykładem zastosowania GenAI w międzynarodowej organizacji usługowej jest system, który przetwarza dziesiątki tysięcy dokumentów i zapytań dziennie. Automatycznie klasyfikuje, tłumaczy, weryfikuje dane nadawców oraz strukturyzuje informacje, realizując zapytania lub prowadząc dialog w celu uzupełnienia brakujących danych. Wcześniej te procesy były realizowane manualnie, a teraz, dzięki Gen AI, ponad 80% zapytań jest zautomatyzowanych, co znacznie upraszcza proces, architekturę technologiczną i obniża koszty operacyjne.
W HR Gen AI jest wykorzystywany do tworzenia opisów stanowisk, wsparcia nowozatrudnionych osób w pierwszych 30/60/90 dniach pracy oraz poprawy całego doświadczenia pracownika. Technologia zwiększa zaangażowanie, eliminuje rutynowe działania i umożliwia bardziej spersonalizowane podejście.
W obszarze Learning & Development (L&D) GenAI automatycznie tworzy szkice szkoleń wraz z materiałami, komentarzami i quizami w wielu językach, skracając czas przygotowania szkoleń z ponad 10 dni do kilku godzin.
W Łańcuchu Dostaw Gen AI wspiera planowanie popytu i zarządzanie zapasami, analizując dane z różnych źródeł i optymalizując je w określonym kontekście. Automatyzuje również obsługę zapytań dostawców, co przekłada się na redukcję kosztów operacyjnych i większą efektywność.
W jednym z projektów Gen AI połączono metody modelowania statystycznego z uczeniem maszynowym, tworząc hiper-spersonalizowane środowisko analityczne. System generuje propozycje strategii, identyfikuje kluczowe punkty i automatycznie dostosowuje analizy, odpowiadając na konkretne pytania użytkowników, od dyrektorów finansowych po analityków.
To tylko kilka z ponad 150 zidentyfikowanych przypadków użycia GenAI w procesach organizacji GBS, które mogą przynieść znaczące korzyści biznesowe w krótkim czasie, w zależności od gotowości organizacji do transformacji.
Jak przygotować operacje, aby GenAI odniosła sukces?
Największą różnicą między GenAI a innymi rewolucyjnymi technologiami ostatnich lat jest to, że jej efekty są namacalne i łatwe do zweryfikowania w rzeczywistych warunkach biznesowych. Aby jednak w pełni wykorzystać potencjał GenAI, konieczne są zmiany w strategii, infrastrukturze, procesach oraz skuteczne zarządzanie zmianą. Miarą sukcesu technologii nie są pojedyncze projekty, lecz skala wdrożeń. Jak wynika z badania Capgemini, 96% liderów biznesu uważa GenAI za kluczowy temat na poziomie zarządu, a 24% firm już wdrożyło zintegrowane narzędzia GenAI w skali, w porównaniu do zaledwie 6% w 2023 roku.
Co więc odróżnia firmy eksperymentujące z GenAI od tych, które wdrażają ją na szeroką skalę?
Strategia: Kluczowe jest stworzenie klarownych mechanizmów zarządzania projektami GenAI w organizacji, obejmujących precyzyjną strategię, zespół ekspercki, zasady bezpiecznego i etycznego korzystania oraz nadzór i finansowanie. Wiele pierwszych inicjatyw kończy się niepowodzeniem z powodu braku solidnych fundamentów biznesowych i technologicznych, przez co traktowane są jako demo, a nie długofalowa inwestycja strategiczna.
Koszt: Często pomijanym elementem jest brak odpowiednich podstaw biznesowych i technicznych do kontrolowania kosztów związanych z użytkowaniem rozwiązań opartych na GenAI. Źle zaprojektowane systemy, zwłaszcza oparte na dużych modelach językowych, mogą generować wysokie koszty, głównie ze względu na wymagania technologiczne i model rozliczeń, np. opłaty za token (około 3 znaki tekstu) rozliczane zarówno za tekst wysyłany, jak i otrzymany. Znane są przypadki, gdzie niekontrolowany sposób obsługi zapytań przekraczał zakładany roczny budżet w ciągu miesiąca. Istnieją jednak techniczne mechanizmy, które mogą obniżyć koszty nawet o 80%.
Zaufanie: Nawet najlepsza technologia nie przyniesie zwrotu z inwestycji, jeśli istnieje niekontrolowane ryzyko techniczne, dotyczące bezpieczeństwa danych czy regulacji (np. Europejski AI Act). Użytkownicy biznesowi nie zaufają jej. Eksperci wskazali 12 kluczowych aspektów biznesowych, technicznych i związanych ze zmianą, które każda aplikacja GenAI musi spełniać. W skrócie, każde rozwiązanie powinno: działać skutecznie, działać niezawodnie, spełniać oczekiwania użytkownika i działać w jego najlepszym interesie. Realizacja tych celów wymaga odpowiedniej kontroli technologii, dbałości o doświadczenie użytkownika i zarządzania zmianą, z czego to ostatnie często jest mylnie utożsamiane jedynie z operacjami back office.
Skala: Spośród ponad 1000 międzynarodowych organizacji zapytanych o udostępnienie narzędzi GenAI zatrudnionym osobom, aż 97% zezwala na ich użycie. Z tego 54% daje dostęp wszystkim zespołom pod warunkiem przestrzegania firmowej polityki, a 36% udostępnia je wybranym grupom, w zależności od roli i umiejętności. Skalowanie GenAI dotyczy nie tylko liczby użytkowników, ale także wspieranych interakcji, integracji i automatyzacji. Aby osiągnąć pełną skalę, konieczne jest stworzenie platformy biznesowej, która łączy infrastrukturę z reużywalnymi, skalowalnymi komponentami opartymi na ekosystemie danych, systemach i automatyzacji.
GenAI dzisiaj, a co czeka nas jutro?
Dla wielu firm generatywna sztuczna inteligencja może wydawać się technologią przyszłości lub narzędziem dla ekspertów. Tymczasem organizacje, które już teraz budują fundamenty i odnoszą pierwsze sukcesy, zyskują nie tylko skuteczne narzędzie transformacji, ale także przewagę rynkową.
Innowacje nie kończą się na dużych modelach językowych - nadchodzą technologie oparte na małych, specjalistycznych modelach multimodalnych (obsługujących tekst, głos i obraz) oraz systemy niezależnych agentów (Agentic AI), które potrafią planować, negocjować, pisać kod i się rozwijać. Wdrożenia tych technologii pokazują, że może to być prawdziwa automatyzacja, która rozumie dane, planuje działania i dostosowuje się do wymagań biznesu. Dzięki temu ludzie mogą skupić się na tym, co naprawdę ważne – wykorzystując swoją wiedzę, kreatywność i intuicję, wspierani przez inteligentne technologie.
Autor: Marek A. Sowa, Starszy Dyrektor ds. GenAI, Capgemini Polska.
Najnowsze wiadomości
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Najnowsze artykuły
5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata- a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".
Oferty Pracy
-
Młodszy konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant Microsoft Dynamics 365
-
Konsultant Wdrożeniowy Symfonia – księgowość
-
Microsoft Fabric Engineer (MFE)
-
Data/Business Analyst (PBI/Fabric)
-
CRM consultant
-
Starszy architekt systemów rozproszonych
-
Inżynier Zastosowań AI
Przeczytaj Również
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku o wartości sztucznej inteligencji decyduje nie jej „nowość”, ale zdolność do dostarczan… / Czytaj więcej
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Ponad 60% średnich przedsiębiorstw przemysłowych w Europie uważa, że tempo ich transformacji cyfrow… / Czytaj więcej
Nowa era komunikacji biznesowej, KSeF stał się faktem
Od 1 lutego 2026 roku, w Polsce z sukcesem rozpoczęła się nowa era elektronicznej komunikacji w biz… / Czytaj więcej
Co dziś decyduje o sukcesie projektów IT?
Według danych z analizy rynku IT w 2025 roku, 59% projektów jest ukończonych w ramach budżetu, 47%… / Czytaj więcej
Przemysł w 2026 roku: od eksperymentów do zdyscyplinowanego wdrażania AI
Rok 2026 będzie momentem przejścia firm produkcyjnych od pilotaży technologicznych do konsekwentnyc… / Czytaj więcej
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś… / Czytaj więcej

