AI, jako kluczowy czynnik przyspieszający proces zmiany modelu biznesowego w kierunku serwicyzacji
Katgoria: WIADOMOŚCI / Utworzono: 23 listopad 2023
Sztuczna inteligencja (AI) ma istotny wpływ na przyspieszenie procesu serwicyzacji w rozmaitych sektorach gospodarki. Nowe badanie przeprowadzone przez IFS pokazuje, że dla 43% respondentów zajmujących najwyższe stanowiska decyzyjne i zarządcze w przedsiębiorstwach, przejście na model biznesowy oparty na usługach jest celem priorytetowym. Podstawowymi czynnikami przyspieszającymi jego osiągnięcie są właśnie sztuczna inteligencja i automatyzacja.
Obecnie 28% przedsiębiorstw korzysta z najnowszych narzędzi technologicznych takich jak sztuczna inteligencja, aby przyspieszyć proces adaptacji modelu biznesowego zwanego serwicyzacją i poprawić dzięki temu swoją efektywność. W dzisiejszym, dynamicznie zmieniającym się świecie firmy dążą do uzyskania przewagi nad konkurencją wykorzystując możliwości oferowane przez AI i automatyzację, których wpływ na zwiększenie przychodów i rentowności, a także zmianę sposobu tworzenia wartości dla klientów, jest bezdyskusyjny.
Najbardziej pożądane technologie
O fundamentalnej roli sztucznej inteligencji w modelu biznesowym opartym na usługach wiedzą doskonale decydenci i liderzy wszystkich branż. Również dostawcy rozwiązań technologicznych dla przedsiębiorstw w coraz większym stopniu zauważają jej rosnące znaczenie w kształtowaniu decyzji inwestycyjnych swoich klientów. Badanie IFS dobitnie pokazuje wysokie zapotrzebowanie na technologię AI. Aż 52% respondentów uznaje jej wdrożenie za konieczne, a kolejne 40% przyznaje, że "mogliby lub powinni" to zrobić. Niemal identyczny wynik odnotowano w podejściu do automatyzacji z 51% respondentów uznających jej wdrożenie za niezbędne i 41% za potencjalnie możliwe.
Ważną rolę odgrywają także technologie wspierające. 46% respondentów podkreśla fundamentalne znaczenie interoperacyjności wszystkich procesów biznesowych oraz konieczność zapewnienia kompleksowej i płynnej komunikacji na każdym etapie ich realizacji. Ponadto, jako obszar odgrywający szczególnie istotną rolę w funkcjonowaniu przedsiębiorstwa uważa się zarządzanie jego majątkiem (EAM). 40% respondentów planuje wdrożenie tego rozwiązania, a kolejne 50% przyznaje, że warto je rozważyć.
Potwierdzona wartość dla klienta
Obecnie w centrum uwagi przedsiębiorstw pozostają jednak dwa obszary: sztuczna inteligencja i automatyzacja. Sztuczna inteligencja stała się fundamentem transformacji modelu biznesowego firm w kierunku serwicyzacji, w którym przedsiębiorstwa skupiają się na świadczeniu usług i dostosowywaniu ich do potrzeb klientów, a nie tylko na sprzedaży produktów.
Tam, gdzie aktywa fizyczne są istotnym elementem prowadzenia działalności, od przemysłu ciężkiego, przez wydobycie i przetwórstwo ropy i gazu, aż po sektor usług publicznych, obserwujemy rosnące zainteresowanie analizą różnych scenariuszy biznesowych z wykorzystaniem symulacji przedsiębiorstwa. Metoda ta w coraz większym stopniu wykorzystuje opartą na sztucznej inteligencji technologię cyfrowego bliźniaka. Symulacja może być przeprowadzana na poziomie całej firmy lub w konkretnym obszarze w celu określenia strategii, kolejnych kroków i działań dostosowujących organizację do wymogów zmieniającego się otoczenia.
Pierwsza sytuacja dotyczy na przykład firm energetycznych. Mogą one zdecydować się na przeprowadzenie symulacji w związku ze zbliżającą się podwyżką cen energii, by zbadać jej wpływ na sytuację przedsiębiorstwa i opracować niezbędne do podjęcia kroki. Z kolei druga sytuacja odnosi się do symulacji przeprowadzonej przykładowo z perspektywy finansowej ze względu na kryzys geopolityczny lub rosnące koszty. Jej celem jest ocena kondycji finansowej firmy i jej funkcjonowania w zmiennym otoczeniu biznesowym.
Wiedza pozyskiwana dzięki symulacji może być następnie wykorzystana do optymalizacji procesu planowania usług, a w konsekwencji wpłynąć także na całą strategię serwicyzacji. Jeśli na przykład wydarzenia geopolityczne spowodują zakłócenia w łańcuchu dostaw, dostawca usług serwisowych może potrzebować więcej czasu na realizację niezbędnych napraw i przeglądów. Następnym logicznym krokiem jest wykorzystanie wniosków płynących z symulacji do zrewidowania procesu planowania, lepszego dostosowania się do zmiennych warunków i efektywniejszego zarządzania procesami biznesowymi w trudnych sytuacjach.
Jednocześnie sztuczna inteligencja jest narzędziem niezwykle przydatnym w wykrywaniu nietypowych zdarzeń. Algorytmy uczenia maszynowego potrafią analizować ogromne zbiory danych, co pozwala lepiej zrozumieć preferencje i zachowania klientów. Ta bezcenna wiedza umożliwia dostosowanie produktów i usług do indywidualnych potrzeb i preferencji tak, aby uzyskać najwyższy poziom satysfakcji klientów.
Wykorzystując zdolność technologii AI do wykrywania nieprawidłowości, można przewidywać i zapobiegać awariom sprzętu przed ich wystąpieniem. Sektor przemysłowy zna wiele takich sytuacji. W branży naftowej i gazowej przedsiębiorstwa posługują się systemami do wykrywania anomalii w celu zidentyfikowania nietypowych wzorców w istniejących danych. Na ich podstawie można błyskawicznie opracować modele przewidujące potencjalne awarie i podjąć działania naprawcze dużo wcześniej, niż mogłaby to zrobić obsługa serwisowa. Również w branży chemicznej technologia ta pozwala zidentyfikować zdarzenia niezgodne z normami znacznie wcześniej, a tym samym zmniejszyć koszty przeróbek i magazynowania. W górnictwie natomiast pozwala ona monitorować ruch rudy niskiej jakości i dostosować prędkość mielenia tak, aby zapobiec zatorom.
Z punktu widzenia klientów wykorzystywanie technologii AI w wykrywaniu anomalii pomaga skrócić czas przestojów, w większym stopniu wykorzystywać dostępne zasoby i obniżyć koszty obsługi technicznej. Jest również cennym narzędziem w analizie danych klientów, a także identyfikacji wzorców i trendów. Pozyskane w ten sposób informacje mogą być następnie wykorzystane w tworzeniu bardziej spersonalizowanej i proaktywnej komunikacji z klientami, polegającej m.in. na dostarczaniu rekomendacji zgodnych z ich preferencjami.
Generatywna sztuczna inteligencja jest zatem narzędziem, które umożliwia dalsze doskonalenie modelu biznesowego opartego na usługach. Analizuje wszystkie istotne dane, wskazując obszary, w których procesy dostarczania usług są nieskuteczne oraz rekomendując niezbędne zmiany.
Praktyczne wdrożenia z obecnej perspektywy
Jednym z celów badania IFS było sprawdzenie w jakim celu firmy korzystają obecnie z technologii AI. Dla 28% respondentów priorytetem jest zdobywanie nowych grup klientów i tworzenie nowych strategii marketingowych. Tuż za nimi znalazło się zwiększanie satysfakcji klienta (27%), poprawa retencji klientów (26%) i wyższe marże zysku (25%).
Zadaniem automatyzacji jest usprawnienie samego procesu dostarczania usług. Eliminuje zadania powtarzalne i wykonywane ręcznie, dzięki czemu proces świadczenia usług przebiega bardziej efektywnie i na większą skalę. Z kolei zrobotyzowana automatyzacja procesów (ang. Robotic Process Automation, RPA) polega nie tylko na automatyzacji zadań, ale przede wszystkim na analizie danych, sztucznej inteligencji i integracji różnych zasobów, dzięki czemu jest narzędziem bardziej wszechstronnym i efektywnym w realizacji zadań i procesów. Bogata funkcjonalność RPA pozwala również optymalizować procesy back-end, redukować koszty operacyjne i poprawiać jakość obsługi.
W dzisiejszym świecie, w którym rośnie znaczenie sektora usług w gospodarce, lada wyzwaniem jest zaspokajanie wymagań klientów przy jednoczesnym utrzymaniu wysokiego zaangażowania pracowników, poziomu realizacji umów SLA i minimalizacji kosztów. Sztuczna inteligencja pozwala przedsiębiorcom usprawnić procesy biznesowe, realizację usług i zwiększanie satysfakcji klientów oferując możliwość inteligentnej i efektywnej dystrybucji zadań, dostosowywanie się na bieżąco do zmieniających się warunków w otoczeniu biznesowym oraz prognozowanie przyszłych zdarzeń i potrzeb. Nadal jednak ostatnie słowo należy do człowieka – sztuczna inteligencja wspiera go w podejmowaniu decyzji, lecz nie zastępuje.
Pozytywne perspektywy
Dla firm, które chcą znaleźć się wśród liderów transformacji modelu biznesowego w kierunku serwicyzacji, korzystanie z możliwości oferowanych przez sztuczna inteligencje i automatyzację stanowi kluczowy element ich strategii. Technologie te nie są jedynie chwilowymi trendami, dostarczającymi narzędzi do podnoszenia efektywności firm; lecz prawdziwymi katalizatorami innowacji, satysfakcji klienta i zrównoważonego wzrostu.
Przedsiębiorstwa, które aktywnie wdrażają obie technologie – nie zapominając przy tym o właściwej komunikacji z wyrażającymi swoje obawy pracownikami, dostosowaniu organizacji pracy do nowych rozwiązań oraz zwiększaniu kompetencji, gotowości i efektywności organizacji w obszarze korzystania z zaawansowanych technologii – są liderami w swoich branżach, kształtują przyszłość gospodarki zbudowanej na usługach i zaangażowaniu klienta. Przedsiębiorstwa te nie ograniczają się do dostosowywania się do zachodzących zmian, ale są ich inicjatorami, tworzącymi trudną do skopiowania przewagę konkurencyjną. W przyszłości rola sztucznej inteligencji i automatyzacji w tworzeniu modelu biznesowego opartego na serwicyzacji będzie rosła jeszcze bardziej. Teraz jest odpowiedni moment aby te nowoczesne rozwiązania wdrażać i wykorzystywać ich potencjał, nieustannie poszukiwać innowacji i na stałe zająć miejsce lidera zmian w epoce dynamicznej transformacji biznesowej.
Źródło: IFS
Najbardziej pożądane technologie
O fundamentalnej roli sztucznej inteligencji w modelu biznesowym opartym na usługach wiedzą doskonale decydenci i liderzy wszystkich branż. Również dostawcy rozwiązań technologicznych dla przedsiębiorstw w coraz większym stopniu zauważają jej rosnące znaczenie w kształtowaniu decyzji inwestycyjnych swoich klientów. Badanie IFS dobitnie pokazuje wysokie zapotrzebowanie na technologię AI. Aż 52% respondentów uznaje jej wdrożenie za konieczne, a kolejne 40% przyznaje, że "mogliby lub powinni" to zrobić. Niemal identyczny wynik odnotowano w podejściu do automatyzacji z 51% respondentów uznających jej wdrożenie za niezbędne i 41% za potencjalnie możliwe.
Ważną rolę odgrywają także technologie wspierające. 46% respondentów podkreśla fundamentalne znaczenie interoperacyjności wszystkich procesów biznesowych oraz konieczność zapewnienia kompleksowej i płynnej komunikacji na każdym etapie ich realizacji. Ponadto, jako obszar odgrywający szczególnie istotną rolę w funkcjonowaniu przedsiębiorstwa uważa się zarządzanie jego majątkiem (EAM). 40% respondentów planuje wdrożenie tego rozwiązania, a kolejne 50% przyznaje, że warto je rozważyć.
Potwierdzona wartość dla klienta
Obecnie w centrum uwagi przedsiębiorstw pozostają jednak dwa obszary: sztuczna inteligencja i automatyzacja. Sztuczna inteligencja stała się fundamentem transformacji modelu biznesowego firm w kierunku serwicyzacji, w którym przedsiębiorstwa skupiają się na świadczeniu usług i dostosowywaniu ich do potrzeb klientów, a nie tylko na sprzedaży produktów.
Tam, gdzie aktywa fizyczne są istotnym elementem prowadzenia działalności, od przemysłu ciężkiego, przez wydobycie i przetwórstwo ropy i gazu, aż po sektor usług publicznych, obserwujemy rosnące zainteresowanie analizą różnych scenariuszy biznesowych z wykorzystaniem symulacji przedsiębiorstwa. Metoda ta w coraz większym stopniu wykorzystuje opartą na sztucznej inteligencji technologię cyfrowego bliźniaka. Symulacja może być przeprowadzana na poziomie całej firmy lub w konkretnym obszarze w celu określenia strategii, kolejnych kroków i działań dostosowujących organizację do wymogów zmieniającego się otoczenia.
Pierwsza sytuacja dotyczy na przykład firm energetycznych. Mogą one zdecydować się na przeprowadzenie symulacji w związku ze zbliżającą się podwyżką cen energii, by zbadać jej wpływ na sytuację przedsiębiorstwa i opracować niezbędne do podjęcia kroki. Z kolei druga sytuacja odnosi się do symulacji przeprowadzonej przykładowo z perspektywy finansowej ze względu na kryzys geopolityczny lub rosnące koszty. Jej celem jest ocena kondycji finansowej firmy i jej funkcjonowania w zmiennym otoczeniu biznesowym.
Wiedza pozyskiwana dzięki symulacji może być następnie wykorzystana do optymalizacji procesu planowania usług, a w konsekwencji wpłynąć także na całą strategię serwicyzacji. Jeśli na przykład wydarzenia geopolityczne spowodują zakłócenia w łańcuchu dostaw, dostawca usług serwisowych może potrzebować więcej czasu na realizację niezbędnych napraw i przeglądów. Następnym logicznym krokiem jest wykorzystanie wniosków płynących z symulacji do zrewidowania procesu planowania, lepszego dostosowania się do zmiennych warunków i efektywniejszego zarządzania procesami biznesowymi w trudnych sytuacjach.
Jednocześnie sztuczna inteligencja jest narzędziem niezwykle przydatnym w wykrywaniu nietypowych zdarzeń. Algorytmy uczenia maszynowego potrafią analizować ogromne zbiory danych, co pozwala lepiej zrozumieć preferencje i zachowania klientów. Ta bezcenna wiedza umożliwia dostosowanie produktów i usług do indywidualnych potrzeb i preferencji tak, aby uzyskać najwyższy poziom satysfakcji klientów.
Wykorzystując zdolność technologii AI do wykrywania nieprawidłowości, można przewidywać i zapobiegać awariom sprzętu przed ich wystąpieniem. Sektor przemysłowy zna wiele takich sytuacji. W branży naftowej i gazowej przedsiębiorstwa posługują się systemami do wykrywania anomalii w celu zidentyfikowania nietypowych wzorców w istniejących danych. Na ich podstawie można błyskawicznie opracować modele przewidujące potencjalne awarie i podjąć działania naprawcze dużo wcześniej, niż mogłaby to zrobić obsługa serwisowa. Również w branży chemicznej technologia ta pozwala zidentyfikować zdarzenia niezgodne z normami znacznie wcześniej, a tym samym zmniejszyć koszty przeróbek i magazynowania. W górnictwie natomiast pozwala ona monitorować ruch rudy niskiej jakości i dostosować prędkość mielenia tak, aby zapobiec zatorom.
Z punktu widzenia klientów wykorzystywanie technologii AI w wykrywaniu anomalii pomaga skrócić czas przestojów, w większym stopniu wykorzystywać dostępne zasoby i obniżyć koszty obsługi technicznej. Jest również cennym narzędziem w analizie danych klientów, a także identyfikacji wzorców i trendów. Pozyskane w ten sposób informacje mogą być następnie wykorzystane w tworzeniu bardziej spersonalizowanej i proaktywnej komunikacji z klientami, polegającej m.in. na dostarczaniu rekomendacji zgodnych z ich preferencjami.
Generatywna sztuczna inteligencja jest zatem narzędziem, które umożliwia dalsze doskonalenie modelu biznesowego opartego na usługach. Analizuje wszystkie istotne dane, wskazując obszary, w których procesy dostarczania usług są nieskuteczne oraz rekomendując niezbędne zmiany.
Praktyczne wdrożenia z obecnej perspektywy
Jednym z celów badania IFS było sprawdzenie w jakim celu firmy korzystają obecnie z technologii AI. Dla 28% respondentów priorytetem jest zdobywanie nowych grup klientów i tworzenie nowych strategii marketingowych. Tuż za nimi znalazło się zwiększanie satysfakcji klienta (27%), poprawa retencji klientów (26%) i wyższe marże zysku (25%).
Zadaniem automatyzacji jest usprawnienie samego procesu dostarczania usług. Eliminuje zadania powtarzalne i wykonywane ręcznie, dzięki czemu proces świadczenia usług przebiega bardziej efektywnie i na większą skalę. Z kolei zrobotyzowana automatyzacja procesów (ang. Robotic Process Automation, RPA) polega nie tylko na automatyzacji zadań, ale przede wszystkim na analizie danych, sztucznej inteligencji i integracji różnych zasobów, dzięki czemu jest narzędziem bardziej wszechstronnym i efektywnym w realizacji zadań i procesów. Bogata funkcjonalność RPA pozwala również optymalizować procesy back-end, redukować koszty operacyjne i poprawiać jakość obsługi.
W dzisiejszym świecie, w którym rośnie znaczenie sektora usług w gospodarce, lada wyzwaniem jest zaspokajanie wymagań klientów przy jednoczesnym utrzymaniu wysokiego zaangażowania pracowników, poziomu realizacji umów SLA i minimalizacji kosztów. Sztuczna inteligencja pozwala przedsiębiorcom usprawnić procesy biznesowe, realizację usług i zwiększanie satysfakcji klientów oferując możliwość inteligentnej i efektywnej dystrybucji zadań, dostosowywanie się na bieżąco do zmieniających się warunków w otoczeniu biznesowym oraz prognozowanie przyszłych zdarzeń i potrzeb. Nadal jednak ostatnie słowo należy do człowieka – sztuczna inteligencja wspiera go w podejmowaniu decyzji, lecz nie zastępuje.
Pozytywne perspektywy
Dla firm, które chcą znaleźć się wśród liderów transformacji modelu biznesowego w kierunku serwicyzacji, korzystanie z możliwości oferowanych przez sztuczna inteligencje i automatyzację stanowi kluczowy element ich strategii. Technologie te nie są jedynie chwilowymi trendami, dostarczającymi narzędzi do podnoszenia efektywności firm; lecz prawdziwymi katalizatorami innowacji, satysfakcji klienta i zrównoważonego wzrostu.
Przedsiębiorstwa, które aktywnie wdrażają obie technologie – nie zapominając przy tym o właściwej komunikacji z wyrażającymi swoje obawy pracownikami, dostosowaniu organizacji pracy do nowych rozwiązań oraz zwiększaniu kompetencji, gotowości i efektywności organizacji w obszarze korzystania z zaawansowanych technologii – są liderami w swoich branżach, kształtują przyszłość gospodarki zbudowanej na usługach i zaangażowaniu klienta. Przedsiębiorstwa te nie ograniczają się do dostosowywania się do zachodzących zmian, ale są ich inicjatorami, tworzącymi trudną do skopiowania przewagę konkurencyjną. W przyszłości rola sztucznej inteligencji i automatyzacji w tworzeniu modelu biznesowego opartego na serwicyzacji będzie rosła jeszcze bardziej. Teraz jest odpowiedni moment aby te nowoczesne rozwiązania wdrażać i wykorzystywać ich potencjał, nieustannie poszukiwać innowacji i na stałe zająć miejsce lidera zmian w epoce dynamicznej transformacji biznesowej.
Źródło: IFS
Najnowsze wiadomości
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Europejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.
Najnowsze artykuły
5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata- a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".
Oferty Pracy
-
Młodszy konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant programista Microsoft Dynamics 365 Business Central
-
Konsultant Microsoft Dynamics 365
-
Konsultant Wdrożeniowy Symfonia – księgowość
-
Microsoft Fabric Engineer (MFE)
-
Data/Business Analyst (PBI/Fabric)
-
CRM consultant
-
Starszy architekt systemów rozproszonych
-
Inżynier Zastosowań AI
Przeczytaj Również
Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku o wartości sztucznej inteligencji decyduje nie jej „nowość”, ale zdolność do dostarczan… / Czytaj więcej
Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
Ponad 60% średnich przedsiębiorstw przemysłowych w Europie uważa, że tempo ich transformacji cyfrow… / Czytaj więcej
Nowa era komunikacji biznesowej, KSeF stał się faktem
Od 1 lutego 2026 roku, w Polsce z sukcesem rozpoczęła się nowa era elektronicznej komunikacji w biz… / Czytaj więcej
Co dziś decyduje o sukcesie projektów IT?
Według danych z analizy rynku IT w 2025 roku, 59% projektów jest ukończonych w ramach budżetu, 47%… / Czytaj więcej
Przemysł w 2026 roku: od eksperymentów do zdyscyplinowanego wdrażania AI
Rok 2026 będzie momentem przejścia firm produkcyjnych od pilotaży technologicznych do konsekwentnyc… / Czytaj więcej
Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?
Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś… / Czytaj więcej

