Przejdź do głównej treści

Bank danych: Big Data to przyszłość bankowości

Katgoria: WIADOMOŚCI / Utworzono: 04 styczeń 2016
Już nie tylko zasobność naszego portfela ma znaczenie dla sektora bankowego. Branża bankowa zaczyna odkrywać potencjał kapitału cyfrowego, czyli danych internetowych, z których korzysta coraz częściej. Bank posiadający narzędzia służące analityce Big Data, może wykorzystać dane o swoich klientach do usprawnienia procesów scoringowych oraz lepszego dopasowania swojej oferty. W praktyce oznacza to, że uzyskanie bankowego kredytu może stać się po prostu szybsze i łatwiejsze.



REKLAMA
ERP-VIEW.PL- STREAMSOFT
Według raportu „Banks Betting Big on Big Data and Real-Time Customer Insight”, autorstwa Bloomberg Businesweek oraz SAP, aż 86 proc. największych banków na świecie deklaruje, że w najbliższych latach priorytetem będzie dla nich zorientowanie działań na konsumenta („customer centricity”), w tym przede wszystkim: dopasowanie oferty do konkretnych, indywidualnych potrzeb klienta. Z drugiej strony połowa banków przyznaje, że nie wdrożyła jeszcze zaawansowanych technologii, pozwalających na realizację tego celu. Upatrują ich jednak w rozwiązaniach z zakresu analityki Big Data.

Big Data zmienia reguły biznesu. To właśnie wielkie analityka wielkich zbiorów danych w najbardziej znaczący sposób przemodeluje biznesowy ekosystem w najbliższych latach. IDC oszacowało, że tylko w zeszłym roku rynek analityki danych rozwijał się w tempie sześciokrotnie szybszym niż cały sektor IT. Z kolei Gartner podaje, że dzięki danym do 2020 roku aż 80 proc. procesów biznesowych zostanie zmodernizowanych. Obecnie – jak twierdzi Gartner – nad rozwiązaniami związanymi z wdrożeniem narzędzi do analityki danych pracuje 64 proc. firm. Wśród nich największy procent wypełniają dwie branże: bankowość oraz ubezpieczenia. To one zmienią się pod wpływem big Data najwyraźniej, ponieważ to właśnie w nich potencjał związany z analityką danych jest największy.
Dzięki danym bank ma możliwość przeprowadzenia procesu scoringowego klienta w ciągu dosłownie kilku minut. Big Data to nie tylko zautomatyzowanie procesów bankowych i usprawnienie pracy samego banku. To przede wszystkim korzyść dla klienta. Jeszcze kilka lat temu osoby ubiegające się o kredyt musiały przedstawić w placówce banku tony dokumentów. Dzisiaj całym procesem zarządzają skomplikowane algorytmy, które analizują wiele różnych parametrów – tłumaczy Piotr Prajsnar, CEO Cloud Technologies, największej platformy Big Data w tej części Europy i spółki zajmującej się analityką danych – Profil internauty często dostarcza bankowcom cenniejszych informacji, niż zgromadzone w teczkach dokumenty. Dlatego kluczowe dla banku jest pozyskiwanie danych o swoim kliencie z wielu różnych źródeł, również tych zewnętrznych. To zaś wymaga implementacji systemów klasy DMP, czyli Data Management Platform – dodaje Piotr Prajsnar.
Platformy DMP to systemy gromadzące i przetwarzające dane o anonimowych internautach z różnych źródeł, również tych zewnętrznych względem banku. Dzięki ich integracji za pomocą platformy DMP bank zyskuje pełny, 360-stopniowy portret swojego klienta. W ten sposób platformy DMP tworzą precyzyjne profile klientów, zawierające informacje o ich zachowaniach oraz preferencjach. Dzięki tym danym banki wiedzą, który klient rozważa obecnie zakup mieszkania, a który zastanawia się nad wzięciem kredytu na remont. Dysponując taką wiedzą bank może wówczas zwrócić się do klienta ze spersonalizowaną ofertą kredytową. Dzięki integracji własnych danych z tymi pochodzącymi z zewnętrznych źródeł, bank może lepiej targetować swój przekaz i docierać do konkretnych klientów.
Internet to dzisiaj przede wszystkim zbiór nieuporządkowanych, ale potencjalnie cennych biznesowo danych. IBM szacuje, że dziennie generujemy ponad 2,5 mld GB danych. Z roku na rok wolumen ten rośnie w Sieci o ponad 40 proc. Według IDC w 2020 roku na każdego internautę przypadnie około 5,2 ZB danych. To w nich zakodowane będą cenne informacje, kluczowe zwłaszcza dla branży bankowej, ale też ubezpieczeniowej czy marketingowej. Jednak ani branża bankowa, ani ubezpieczeniowa, ani marketingowa, nie będą w stanie poradzić sobie z taką ilością danych w ramach własnych, wewnętrznych systemów BI. Dlatego w kolejnych latach dojdzie do integracji bankowych systemów CRM z platformami DMP, które pozwolą przekształcić nieuporządkowane Big Data w wartościowe Smart Data – mówi Piotr Prajsnar, CEO Cloud Technologies.
W Polsce prekursorem analityki Big Data w sektorze bankowości był Alior Bank. To właśnie ten bank opracował własne algorytmy przetwarzania i analizy danych o klientach, budując dedykowany zespół ekspertów, specjalizujących się w tej tematyce. Z kolei Bank Smart przy decyzji kredytowej bierze pod uwagę informacje o użytkownikach pochodzące z serwisów społecznościowych. To tzw. social scoring, szczególnie popularny na Zachodzie. Jeśli internauta zaloguje się do banku za pośrednictwem serwisu społecznościowego (np. Facebook czy LinkedIn) oraz zgodzi się na wykorzystanie danych (np. adresu e-mail, roku urodzenia, etc.), to bank automatycznie uwzględni te dane we wniosku kredytowym.
Dla banku kluczowa jest integracja jego systemu CRM z platformą DMP. Załóżmy, że w swoim systemie CRM bank posiada 10 mln potencjalnych klientów. Przeważnie nie wie jednak dokładnie, którzy z nich mogą być aktualnie zainteresowani ofertą kredytową czy zakupem mieszkania. Dzięki zharmonizowaniu CRM i DMP, czyli uwzględnieniu analityki Big Data w relacjach z klientami, odsłaniają się przed bankiem nowe zależności, które wcześniej nie były mu znane – mówi Piotr Prajsnar – Wykorzystując Big Data systemy scoringowe banku mogą przetwarzać informacje o internautach, pozyskane przede wszystkim z plików cookies, jak również profili w social media czy portali zakupowych (np. historii zakupów). Analiza profilu internauty na Facebooku, a także np. grona jego znajomych, może pomóc bankowi w ocenie wiarygodności finansowej klienta i zminimalizować ryzyko związane np. z udzieleniem pożyczki klientowi, który może jej nie spłacić – dodaje Piotr Prajsnar.
Oczywiście bank, który wykorzystuje Big Data do procesów scoringowych powinien wskazać klientowi, jakie dane klienta oraz w jakiej formie będzie wykorzystywał – i wytłumaczyć, jakie korzyści klient będzie miał z takiego rozwiązania. Sam klient powinien również mieć możliwość wglądu w swój profil, skonstruowany przez analityków banku. Powinien również każdorazowo zachować możliwość wycofania swojej zgody na przetwarzanie danych przez bank.

Podczas gdy polska bankowość dopiero odkrywa zalety analityki Big Data, na Zachodzie rozwiązania tej klasy stają się już powszechnym zjawiskiem i stają się coraz bardziej zaawansowane. Eric Barba, Digital Marketing Lead w banku Barclaycard US, twierdzi, że to właśnie upowszechnienie wdrożeń analityki Big Data będzie stanowiło kolejne wyzwanie dla działów marketingu cyfrowego w instytucjach finansowych. Dzięki temu bowiem możliwe stanie się stworzenie wielowymiarowych profili klientów.
Z możliwości oferowanych przez analitykę Big Data mogą korzystać dziś nie tylko duże banki, lecz również bankowość spółdzielcza. Narzędzia do analityki danych są bowiem plastyczne i z łatwością dopasowują się do specyfiki każdej instytucji, nawet małego banku spółdzielczego. Platformy DMP można swobodnie zintegrować z systemami takich banków – mówi Piotr Prajsnar.
Skądinąd to właśnie banki spółdzielcze często bywają pionierami we wdrażaniu zaawansowanych rozwiązań technologicznych. Przykładowo – pierwsze rozwiązania biometryczne wdrożył w Polsce Podkarpacki Bank Spółdzielczy w Sanoku.

Według badań przeprowadzonych przez NGData na 183 bankach na całym świecie niemal co drugi (55 proc.) przyznawał, że przetwarzanie danych o klientach w czasie rzeczywistym stanowi obecnie kluczową przewagę konkurencyjną na rynku. Przeszło 76 proc. banków twierdzi, że wdrożenie rozwiązań z zakresu Big Data przyczyniło się do znacznego rozbudowania ich systemów CRM, co z kolei wpłynęło w pozytywny sposób na relacje z klientami i ich lojalność względem banku. 7 na 10 banków (71 proc.) odpowiedziało, że Big Data pozwoliło im na lepsze zrozumienie potrzeb swoich klientów, a tym samym umożliwiło wzrost zysków.

Źródło: Cloud Technologies

Najnowsze wiadomości

Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.

Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
BPSCEuropejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.



Najnowsze artykuły

5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata- a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".

Przeczytaj Również

Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes

W 2026 roku o wartości sztucznej inteligencji decyduje nie jej „nowość”, ale zdolność do dostarczan… / Czytaj więcej

Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością

Ponad 60% średnich przedsiębiorstw przemysłowych w Europie uważa, że tempo ich transformacji cyfrow… / Czytaj więcej

Nowa era komunikacji biznesowej, KSeF stał się faktem

Od 1 lutego 2026 roku, w Polsce z sukcesem rozpoczęła się nowa era elektronicznej komunikacji w biz… / Czytaj więcej

Co dziś decyduje o sukcesie projektów IT?

Według danych z analizy rynku IT w 2025 roku, 59% projektów jest ukończonych w ramach budżetu, 47%… / Czytaj więcej

Przemysł w 2026 roku: od eksperymentów do zdyscyplinowanego wdrażania AI

Rok 2026 będzie momentem przejścia firm produkcyjnych od pilotaży technologicznych do konsekwentnyc… / Czytaj więcej

Hakerzy nie kradną już tylko haseł. Oni kradną Twój czas i przyszłość. Jak chronić ERP przed paraliżem?

Hakerzy coraz rzadziej koncentrują się wyłącznie na kradzieży haseł. Ich prawdziwym celem jest dziś… / Czytaj więcej