Przejdź do głównej treści

Sztuczna inteligencja w systemach ERP – futurystyczna wizja czy obiecująca przyszłość?

Katgoria: ERP / Utworzono: 02 marzec 2018
enova365 2016Co takiego ma do zaoferowania sztuczna inteligencja (AI), że coraz częściej jest obszarem inwestycji? Dlaczego bardziej zaawansowana odmiana AI – machine learning budzi spore obawy? Rozwiewamy wszelkie wątpliwości.
REKLAMA
ERP-VIEW.PL- STREAMSOFT

Wielki magazyn danych sterowany przez maszyny

Wyobraź sobie wielki magazyn, który działa 365 dni w tygodniu przez 24 h na dobę bez ingerencji człowieka. Każdy etap zamówienia jest ściśle kontrolowany przez maszyny i ciągle optymalizowany. Paczki w wielu kolorach poruszają się w niezliczonej liczbie konfiguracji według określonego schematu. Nie było by w tym nic nadzwyczajnego, gdyby nie fakt, że cały ten proces kontroluje algorytm, który bez przerwy uczy się nowych zasad. Tak w uproszczeniu działa bardzo złożony proces zwany machine learning.

Algorytm bardziej wydajny niż ludzki mózg?

Nie ma możliwości by człowiek mógł kontrolować opisane wyżej przedsięwzięcie. Jednak bez ingerencji programisty, algorytm sam się nie napisze. Dlatego kiedy zostanie utworzony, przechodzi skomplikowane testy, które sprawdzają jego bezbłędne działanie. Wraz ze wzrostem zapytań jakie otrzymuje, uczy się wykonywać zadania i rozpoznawać problemy.

Opisany wyżej mechanizm to machine learning. Jego bardziej zaawansowaną odmianą jest deep learning, czyli jedna z najszybciej rozwijających się gałęzi sztucznej inteligencji (AI). Jego praca opiera się na tworzeniu wielowarstwowych sztucznych sieci neuronowych. Są to modele matematyczne, które odwzorowują procesy uczenia się, zachodzące w ludzkim mózgu. Deep learnig wymaga ogromnej mocy obliczeniowej, która umożliwia definiowanie problemów oraz kontrolę złożonych zadań.

Maszyny vs ludzki mózg

Wiele firm już teraz korzysta ze sztucznej inteligencji, przykładem mogą być twórcy sprzętu elektronicznego czy systemów rekomendacji.

Czynności jakie wykorzystuje deep learning:

  • Rozpoznawanie mowy
  • Przetwarzanie języka naturalnego
  • Rozpoznawanie obrazu
  • Systemy rekomendacji

Rola deep learning w zwiększeniu wydajności systemu ERP

Ten aspekt odnosi się do sposobu w jaki systemy uczą się poprawy wydajności dzięki przetwarzaniu ogromnej ilości danych. Od systemów ERP oczekuje się bezbłędnego działania, ciągłego rozwoju i zarządzania procesami w szerokim zakresie. Dzięki machine learning te procesy mogą przebiegać jeszcze bardziej sprawnie.

Przykłady zastosowania w systemach ERP:

- analiza ryzyka wystąpienia błędu w produkcji

- skrócenie czasu dostawy

- ulepszenie jakości obsługi klienta przez proces automatyzacji

Przykładem wykorzystania metod sztucznej inteligencji w biznesie jest chociażby analiza ryzyka odejścia kontrahenta (tzw. churn analysis), popularna m.in. w branży telekomunikacyjnej i w bankowości.

Nie jest to jednak domena tylko i wyłącznie dużych korporacji – dla małych i średnich firm ogromną szansą jest zastosowanie metod sztucznej inteligencji, które mogą pracować na danych pochodzących z systemu ERP. Takie podejście może – choć nie musi – pomóc w zatrzymaniu Klienta przy przedsiębiorstwie. Nie musi, ponieważ ostateczne decyzje muszą zostać podjęte przez człowieka.

Jak teraz działają systemy ERP

Technologie automatyzacji kognitywnej koncentrują się na zadaniach opartych na wiedzy, takich jak odpowiadanie na prośby i pytania dotyczące obsługi klienta. System ERP wyposażony w automatyzację kognitywną może naśladować proces myślowy pracownika, który podejmuje najlepsze decyzje w celu przezwyciężenia problemu klienta. Po zidentyfikowaniu problemu system ERP może krok po kroku przeprowadzić klienta przez procedurę, którą należy wykonać, aby go naprawić.

Podczas gdy maszyny pracują nad zwiększeniem produktywności i wydajności, pracownicy mogą zająć się ważniejszymi sprawami biznesowymi.

Jak mogą działać systemy ERP wyposażone w inteligentną automatyzację

Inteligentna automatyzacja idzie o krok dalej niż automatyzacja kognitywna. Ten rodzaj technologii, która nie ogranicza się do rutynowych i przewidywalnych zadań. Inteligentna automatyzacja jest zdolna do radzenia sobie z poważnymi przypadkami i nieoczekiwanymi sytuacjami dzięki sztucznej inteligencji na której się opiera.

Jedną z najpopularniejszych implementacji tej technologii jest przetwarzanie języka naturalnego. Nie ma konieczności porządkowania żądań i zapytań za pomocą tego typu automatyzacji, zamiast tego komunikujesz się z technologią, tak jak z drugim człowiekiem.

Przyszłość systemów ERP kształtuje się obiecująco w połączeniu z machine learning. Rozpoznawanie wzorów, sortowanie obrazów i analiza wizualna to tylko niektóre sposoby pracy z tego typu danymi. Technologia oferuje duży potencjał dla systemów ERP, ponieważ ułatwia śledzenie trendów za pomocą wykresów.

Kiedy sztuczna inteligencja stanie się standardem dla systemów ERP?

Nie da się udzielić jednoznacznej odpowiedzi na to pytanie. Sztuczna inteligencja wszystkich trzech typów wciąż znajduje swój początek w szerokim zakresie zastosowań. Programiści chcą przetestować, co mogą osiągnąć dzięki AI, podczas gdy firmy chcą wiedzieć, jak odniosą korzyści, jeśli przejdą proces wdrażania.

Możemy z pewnością spodziewać się wzrostu zastosowania takich rozwiązań, w ciągu najbliższych lat. Już teraz firmy, które korzystają z systemów ERP doceniają potęgę automatyzacji procesów operacyjnych. Przykładem może być zastosowanie ERP enova365 w procesie automatyzacji HR.

Nie należy zapominać, że najważniejsza jest rola człowieka, który najpierw pracuje nad implementacją machine learning, potem czuwa nad poprawnym wyuczeniem modeli, a następnie podejmuje decyzje na podstawie pewnych sugestii, które takie algorytmy mogą mu zwrócić.

Źródło: www.enova.pl


Oceń systemy
ENOVA i TRIVA na stronie www.raport-erp.pl



Najnowsze wiadomości

Customer-specific AI: dlaczego w 2026 roku to ona przesądza o realnym wpływie AI na biznes
W 2026 roku sztuczna inteligencja przestaje być ciekawostką technologiczną, a zaczyna być rozliczana z realnego wpływu na biznes. Organizacje oczekują dziś decyzji, którym można zaufać, procesów działających przewidywalnie oraz doświadczeń klientów, które są spójne w skali. W tym kontekście coraz większe znaczenie zyskuje customer-specific AI - podejście, w którym inteligencja jest osadzona w danych, procesach i regułach konkretnej firmy, a nie oparta na generycznych, uśrednionych modelach.
PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems
PROMAG S.A., lider w obszarze intralogistyki, rozpoczął wdrożenie systemu ERP IFS Cloud, który ma wesprzeć dalszy rozwój firmy oraz integrację kluczowych procesów biznesowych. Projekt realizowany jest we współpracy z firmą L-Systems i obejmuje m.in. obszary finansów, produkcji, logistyki, projektów oraz serwisu, odpowiadając na rosnącą skalę i złożoność realizowanych przedsięwzięć.
SkyAlyne stawia na IFS dla utrzymania floty RCAF
SkyAlyne, główny wykonawca programu Future Aircrew Training (FAcT), wybrał IFS Cloud for Aviation Maintenance jako cyfrową platformę do obsługi technicznej lotnictwa i zarządzania majątkiem. Wdrożenie ma zapewnić wgląd w czasie rzeczywistym w utrzymanie floty, zasoby i zgodność, ograniczyć przestoje oraz zwiększyć dostępność samolotów szkoleniowych RCAF w skali całego kraju. To ważny krok w modernizacji kanadyjskiego systemu szkolenia załóg lotniczych.
Wykorzystanie AI w firmach rośnie, ale wolniej, niż oczekiwano. Towarzyszy temu sporo rozczarowań
Wykorzystanie sztucznej inteligencji w firmach rośnie, ale tempo realnych wdrożeń pozostaje znacznie wolniejsze od wcześniejszych oczekiwań rynku. Dane pokazują, że z rozwiązań AI korzysta dziś wciąż niewiele przedsiębiorstw, a menedżerowie coraz częściej wskazują na bariery regulacyjne, koszty oraz brak powtarzalnych efektów biznesowych. W praktyce technologia jest testowana głównie w wybranych obszarach, a kluczowe decyzje nadal pozostają po stronie człowieka. Również w firmach, które wdrożyły AI, nierzadko towarzyszą temu rozczarowania.

Europejski przemysł cyfryzuje się zbyt wolno – ERP, chmura i AI stają się koniecznością
BPSCEuropejski przemysł średniej wielkości wie, że cyfryzacja jest koniecznością, ale wciąż nie nadąża za tempem zmian. Ponad 60% firm ocenia swoje postępy w transformacji cyfrowej jako zbyt wolne, mimo rosnącej presji konkurencyjnej, regulacyjnej i kosztowej. Raport Forterro pokazuje wyraźną lukę między świadomością potrzeby inwestycji w chmurę, ERP i AI a realną zdolnością do ich wdrożenia – ograniczaną przez braki kompetencyjne, budżety i gotowość organizacyjną.



Najnowsze artykuły

5 pułapek zarządzania zmianą, które mogą wykoleić transformację cyfrową i wdrożenie ERP
Dlaczego jedne wdrożenia ERP dowożą korzyści, a inne kończą się frustracją, obejściami w Excelu i spadkiem zaufania do systemu? Najczęściej decyduje nie technologia, lecz to, jak organizacja prowadzi zmianę: czy liderzy biorą odpowiedzialność za decyzje czy tempo jest dopasowane do zdolności absorpcji oraz czy ludzie dostają klarowność ról i realne kompetencje. Do tego dochodzi pytanie: co po go-live - stabilizacja czy chaos w firmie? Poniżej znajdziesz 5 pułapek, które najczęściej wykolejają transformację i praktyczne sposoby, jak im zapobiec.
SAP vs Oracle vs Microsoft: jak naprawdę wygląda chmura i sztuczna inteligencja w ERP
Wybór systemu ERP w erze chmury i sztucznej inteligencji to decyzja, która determinuje sposób działania organizacji na lata — a często także jej zdolność do skalowania, adaptacji i realnej transformacji cyfrowej. SAP, Oracle i Microsoft oferują dziś rozwiązania, które na pierwszy rzut oka wyglądają podobnie, lecz w praktyce reprezentują zupełnie odmienne podejścia do chmury, AI i zarządzania zmianą. Ten artykuł pokazuje, gdzie kończą się deklaracje, a zaczynają realne konsekwencje biznesowe wyboru ERP.
Transformacja cyfrowa z perspektywy CFO: 5 rzeczy, które przesądzają o sukcesie (albo o kosztownej porażce)
Transformacja cyfrowa w finansach często zaczyna się od pytania o ERP, ale w praktyce rzadko sprowadza się wyłącznie do wyboru systemu. Dla CFO kluczowe jest nie tylko „czy robimy pełną wymianę ERP”, lecz także jak policzyć ryzyko operacyjne po uruchomieniu, ocenić wpływ modelu chmurowego na koszty OPEX oraz utrzymać audytowalność i kontrolę wewnętrzną w nowym modelu działania firmy.
Agentic AI rewolucjonizuje HR i doświadczenia pracowników
Agentic AI zmienia HR: zamiast odpowiadać na pytania, samodzielnie realizuje zadania, koordynuje procesy i podejmuje decyzje zgodnie z polityką firmy. To przełom porównywalny z transformacją CRM – teraz dotyczy doświadczenia pracownika. Zyskują HR managerowie, CIO i CEO: mniej operacji, więcej strategii. W artykule wyjaśniamy, jak ta technologia redefiniuje rolę HR i daje organizacjom przewagę, której nie da się łatwo nadrobić.
Composable ERP: Przewodnik po nowoczesnej architekturze biznesowej
Czy Twój system ERP nadąża za tempem zmian rynkowych, czy stał się cyfrową kotwicą hamującą rozwój? W dobie nieciągłości biznesowej tradycyjne monolity ustępują miejsca elastycznej architekturze Composable ERP. To rewolucyjne podejście pozwala budować środowisko IT z niezależnych modułów (PBC) niczym z klocków, zapewniając zwinność nieosiągalną dla systemów z przeszłości. W tym raporcie odkryjesz, jak uniknąć pułapki długu technologicznego, poznasz strategie liderów rynku (od SAP po MACH Alliance) i wyciągniesz lekcje z kosztownych błędów gigantów takich jak Ulta Beauty. To Twój strategiczny przewodnik po transformacji z cyfrowego "betonu" w adaptacyjną "plastelinę".

Przeczytaj Również

PROMAG S.A. rozpoczyna wdrożenie systemu ERP IFS Cloud we współpracy z L-Systems

PROMAG S.A., polska spółka specjalizująca się w intralogistyce, rozpoczęła projekt wdrożenia system… / Czytaj więcej

SkyAlyne stawia na IFS dla utrzymania floty RCAF

Wybór platformy IFS Cloud for Aviation Maintenance przez SkyAlyne oznacza przejście na w… / Czytaj więcej

System ERP jako narzędzie do zarządzania zrównoważonym rozwojem w firmie

Zrównoważony rozwój przestał być deklaracją wizerunkową, a stał się mierzalnym elementem zarządzani… / Czytaj więcej

Jak Heartland Dental wykorzystuje SAP do transformacji cyfrowej w opiece stomatologicznej

Cyfrowa transformacja w ochronie zdrowia nie musi oznaczać rewolucji i wieloletnich projektów bez e… / Czytaj więcej

AI na hali produkcyjnej: od „excelowej” analizy do Predictive Maintenance z Prodaso

Cyfrowa transformacja w produkcji nie musi oznaczać wymiany całego parku maszynowego ani wieloletni… / Czytaj więcej

ERP zamiast maili: workflow dla 1000+ firm w GLC Accounting

GLC Accounting obsługuje księgowo ponad 1000 firm, a dokumenty trafiają do biura różnymi kanałami… / Czytaj więcej